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Starting FORTH by Leo Brodie 

Starting Forth, the classic Forth language tutorial, is available here in its official online edition. 
Updates to the original Starting FORTH text include code examples that run on iForth and SwiftForth 

systems. Aficionados (and detractors) of the original book's illustrations will find most of them restored in 

this official edition by FORTH, Inc. 

"…I hope this book is not so easy and enjoyable that it seems trivial. Be warned that there is heavy 

content here and that you can learn much about computers and compilers as well as about programming." 

—Charles Moore, Forth's inventor 

"A Forth to be reckoned with..." 

—Leo Brodie, Author 

About the book 

Starting FORTH has been the classic Forth tutorial and textbook since its first release. Many experienced 

programmers have commented on its concise utility and completeness. Beginners will find a carefully 

planned introduction to the Forth programming language that will prepare them for other books like Forth 

Application Techniques and Forth Programmer's Handbook. 

FORTH, Inc. and the book's author, Leo Brodie, thank the global community for its continued enthusiasm 

for this book. Many have sought a new copy, a used copy, or have asked for a reprinting. It is our pleasure 

to now present this online edition, with great appreciation for work done by Marcel Hendrix to generate a 

web version on which these pages were based. 

Notes about this online edition 

Changes made by FORTH, Inc. to Marcel's version were primarily related to internet coding standards 

and visual presentation. We also restored the book's original illustrations here, in most cases. The 

following notes are also relevant and important to those familiar with the original edition. 

Notes by Marcel Hendrix 

This transcript is not an exact reproduction. Forth code has been ANSified. All code should run on, at 

least iForth. Where necessary, statements that were valid in 1981 have been exchanged with statements 

more appropriate for 2003 (when this tribute was written)…. 

I have assumed a 32-bit, byte-addressing Forth with 8-bit characters. The address returned by WORD is 

assumed to be HERE. This allows the common trick of ALLOTing length of str CHARS after using 

WORD in order to compile string str to memory. Multitasking issues are ignored (e.g. no >TYPE, just 

TYPE). Division is symmetric, not floored, and two's complement is assumed throughout. iForth works 

splendidly with it, but other Forths will work too. Chapter 7 exploits extended uses of number conversion. 

Most Forths are broken in this respect, but iForth and SwiftForth support these neat features. 

Other Forth Books and Classes 

As noted above, once you have progressed from the beginning stages and look for more-practical and 

detailed information, several resources are available. The Forth books Forth Application Techniques and 

Forth Programmer's Handbook are a good next step. In addition, Forth classes and training are available 

at our offices or, by arrangement, at your facility. 

Thank you again for your interest in this fascinating and powerful programming language and in Starting 

Forth. 
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http://www.forth.com/resources/evolution/evolve_0.html
http://punchandbrodie.com/leo/
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0. Introductions (1st edition) 

 

About the Author 

 

Leo Brodie's inability to express even the most complex technical concepts without adding a twist of 

humor comes from an early love of comedy. He specialized in playwriting at UCLA and has had several 

comedies produced there and in local theater. He has also written freelance magazine articles and has 

worked as a copywriter for an ad agency. When a company he was working for installed a computer, he 

became inspired to try designing a microprocessor-based toy. Although he never got the toy running, he 

learned a lot about computers and programming. He now works at FORTH, Inc. as a technical and 

marketing writer, where he can play on the computers as the muse determines without having to be a 

fanatical computer jockey, and is allowed to write books such as this. 

Leo's other interests include singing, driving classic Volvos, and dancing to 50's music.
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Foreword 

 

The Forth community can celebrate a significant event with 

the publication of Starting Forth. A greater effort, talent, 

and commitment have gone into this book than into any 

previous introductory manual. I, particularly, am pleased at 

this evidence of the growing popularity of Forth, the 

language. 

I developed Forth over the period of some years as an 

interface between me and the computers I programmed. 

The traditional languages were not providing the power, 

ease, or flexibility that I wanted. I disregarded much 

conventional wisdom in order to include exactly the 

capabilities needed by a productive programmer. The most 

important of these is the ability to add whatever 

capabilities later become necessary. 

The first time I combined the ideas I had been developing 

into a single entity, I was working on an IBM 1130, a 

"third-generation" computer. The result seemed so 

powerful that I considered it a "fourth-generation computer language." I would have called it FOURTH, 

except that the 1130 permitted only five-character identifiers. So FOURTH became FORTH, a nicer play 

on words anyway. 

One principle that guided the evolution of Forth, and continues to guide its application, is bluntly: Keep It 

Simple. A simple solution has elegance. It is the result of exacting effort to understand the real problem 

and is recognized by its compelling sense of rightness. I stress this point because it contradicts the 

conventional view that power increases with complexity. Simplicity provides confidence, reliability, 

compactness, and speed. 

Starting Forth was written and illustrated by Leo Brodie, a remarkably capable person whose insight and 

imagination will become apparent. This book is an original and detailed prescription for learning. It deftly 

guides the novice over the thresholds of understanding that all Forth programmers must cross. 

Although I am the only person who has never had to learn Forth, I do know that its study is a formidable 

one. As with a human language, the usage of many words must be memorized. For beginners, Leo's droll 

comments and superbly cast characters appear to make this study easy and enjoyable. For those like 

myself who already know Forth, a quick reading provides a delightful trip and fresh views of familiar 

terrain. But I hope this book is not so easy and enjoyable that it seems trivial. Be warned that there is 

heavy content here and that you can learn much about computers and compilers as well as about 

programming. 

Forth provides a natural means of communication between man and the smart machines he is surrounding 

himself with. This requires that it share characteristics of human languages, including compactness, 

versatility, and extensibility. I cannot imagine a better language for writing programs, expressing 

algorithms, or understanding computers. As you read this book, I hope that you may come to agree. 

Charles H. Moore 

Inventor of Forth 
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About This Book 

Welcome to Starting Forth, your introduction to an exciting and powerful computer language called 

Forth. 

If you're a beginner who wants to learn more about computers, Forth is a great way to learn. Forth is more 

fun to write programs with than any language that I know of. (See the "Introduction for Beginners."
1
) 

If you are a seasoned professional who wants to learn Forth, this book is just what you need. Forth is a 

very different approach to computers, so different that everyone, from newcomers to old hands, learns 

Forth best from the ground up. If you're adept at other computer languages, put them out of your mind for 

now, and remember only what you know about computers. (See the "Introduction for Professionals.") 

Since many people with different backgrounds are interested in Forth, I've arranged this book so that 

you'll only have to read what you need to know, with footnotes addressed to different kinds of readers. 

The first half of Chap. 7 provides a background to computer arithmetic for beginners only. 

This book explains how to write simple applications in Forth. It includes all standard Forth words
2
 that 

you need to write a high-level single-task application. This word set is an extremely powerful one, 

including everything from simple math operators to compiler-controlling words. 

Excluded from this book are all commands that are related to the assembler, target compiler and other 

specialized utilities. These commands are available on some versions of Forth such as eForth and most 

commercial implementations. 

I've chosen examples that will actually work on a Forth system with a terminal and a disk. Don't infer 

from this that Forth is limited to batch or string-handling tasks, since there is really no limit to Forth's 

usefulness. 

Here are some features of this book that will make it easy to use: 

 All commands are listed twice: first, in the section in which the word is introduced, and second, in 

the summary at the end of that chapter. 

 Each chapter also has a review of terms and a set of exercise problems, with answers. 

 Several "Handy Hints" have been included to reveal procedural tips or optional routines that are 

useful for learners but that don't merit an explanation as to how or why they work. 

A personal note: Forth is a very unusual language. It violates many cardinal rules of programming. My 

first reaction to Forth was extremely skeptical, but as I tried to develop complicated applications I began 

to see its beauty and power. You owe it to yourself to keep an open mind while reading about some of its 

peculiarities. I'll warn you now: few programmers who learn Forth ever go back to other languages. 

Good luck, and enjoy learning! 

Leo Brodie 

FORTH, Inc. 
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Introductions 

Introduction for Beginners: What is a Computer Language? 

 

At first when beginners hear the term "computer language," they wonder, "What 

kind of language could a computer possibly speak? It must be awfully hard for 

people to understand. It probably looks like: 

 976#!@NX714&+ 

if it looks like anything at all." 

Actually a computer language should not be difficult to understand. Its purpose is 

simply to serve as a convenient compromise for communication between a person 

and a computer. 

Consider the marionette. You can make a marionette "walk" simply by working 

the wooden control, without even touching the strings. You could say that 

rocking the control means "walking" in the language of the marionette. The 

puppeteer guides the marionette in a way that the marionette can understand and 

that the puppeteer can easily master. 

Computers are machines just like the marionette. They must be told exactly what 

to do, in specific language. And so we need a language which possesses two 

seemingly opposite traits: 

On the one hand, it must be precise in its meaning to the computer, conveying all the information that the 

computer needs to know to perform the operation. On the other hand, it must be simple and easy-to-use 

by the programmer. 

Many languages have been developed since the birth of computers: Fortran is the elder statesman of the 

field; COBOL is still the standard language for data processing; BASIC was designed as a beginner's 

language along the road toward languages like Fortran and COBOL; C and Java are the general purpose 

application languages of the 90's. This book is about a very different kind of language: Forth. Forth's 

popularity has kept constant over the past several years, and its popularity is shared among programmers 

in all fields. 

All the languages mentioned above, including Forth, are called "high-level" languages. It's important for 

beginners to recognize the difference between a high-level language and the computer it runs on. A high-

level language looks the same to a programmer regardless of which make or model of computer it's 

running on. But each make or model has its own internal language, or "machine language." To explain 

what a machine language is, let's return to the marionette. 

Imagine that there is no wooden control and that the puppeteer has to deal directly with the strings. Each 

string corresponds to exactly one part of the marionette's body. The harmonious combinations of 

movements of the individual strings could be called the marionette's "machine language." 
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Now tie the strings to a control. The control is like a high-level language. With a simple turn of the wrist, 

the puppeteer can move many strings simultaneously. 

So it is with a high-level computer language, where the simple and 

familiar symbol "+" causes many internal functions to be performed 

in the process of addition. 

Here's a clever thing about a computer: it can be programmed to 

translate high-level symbols (such as "+") into the computer's own 

machine language. Then it can proceed to carry out the machine 

instructions. A high-level language is a computer program that 

translates humanly understandable words and symbols into the 

machine language of the particular make and model of computer. 

What's the difference between Forth and other high-level languages? 

To put it very briefly: it has to do with the compromise between man 

and computer. A language should be designed for the convenience of 

its human users, but at the same time for compatibility with the operation of the computer. 

Forth is unique among languages because its solution to this problem is unique. This book will explain 

how. 

Introduction for Professionals: Forth in the Real World 

Forth enjoyed a rising tide of popularity up to around 1994,
3
 perhaps most visibly among enthusiasts and 

hobbyists. After 1996 or so Forth's popularity has stayed relatively constant. But this development is only 

a new wrinkle in the history of Forth. Forth has been in use from 1972 on, in critical scientific and 

industrial applications. In fact, if you use a mini- or microcomputer professionally, chances are that Forth 

can run your application — more efficiently than the language you're presently using. 

Now you'll probably ask rhetorically, "If Forth is so efficient, how come I'm not using it?" The answer is 

that you, like most people, don't know what Forth is. 

To really get an understanding of Forth, you should read this book and, if possible, find a Forth system 

and try it for yourself. For those of you who are still at the bookstore browsing, however, this section will 

answer two questions: "What is Forth?" and "What is it good for?" 

Forth is many things: 

 a high-level language 

 an assembly language 

 an operating system 

 a set of development tools 

 a software design philosophy 

As a language, Forth begins with a powerful set of standard commands, then provides the mechanics by 

which you can define your own commands. The structural process of building definitions upon previous 

definitions is Forth's equivalent of high-level coding. Alternatively, words may be defined directly in 

assembler mnemonics, using Forth's assembler. All commands are interpreted by the same interpreter and 

compiled by the same compiler, giving the language extreme flexibility. 

The highest level of your code will resemble an English-language description of your application. Forth 

has been called a "meta-application language" — a language that you can use to create problem-oriented 

languages. 

http://www.forth.com/starting-forth/sf0/sf0.html#footnotes
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As an operating system, Forth does everything that traditional operating systems do, including 

interpretation, compilation, assembling, virtual memory handling, I/O, text editing, etc. 

But because the Forth operating system is much simpler than its traditional counterparts due to Forth's 

design, it runs much more quickly, much more conveniently, and in much less memory. 

What is Forth good for? Forth offers a simple means to maximize a processor's efficiency. For example: 

Forth is fast. High-level Forth executes as fast as other high-level languages and between 20 to 75% 

slower than equivalent assembly-language programs, while time-critical code may be written in assembler 

to run at full processor speed. Without a traditional operating system, Forth eliminates redundancy and 

needless run-time error checking. 

Forth compiled code is compact. Forth applications require less memory than their equivalent assembly-

language programs and consume less power (important for hand-helds and portable gadgets!) Written in 

Forth, the entire operating system and its standard word set reside in less than 8K bytes. Support for a 

target application may require less than 1K bytes. 

Forth is transportable. It has been implemented on just about every mini- and microcomputer known to 

the industry. Most microcontrollers and DSPs, even tiny ones, also have a Forth implementation. 

Forth has been known to cut program development time by a factor of ten for equivalent assembly-

language programming and by a factor of two for equivalent high-level programming in C or Java. 

Productivity increases because Forth epitomizes "structured programming" and because it is interactive 

and modular. 

Here are a few samples of Forth in the real world:
4
 

 

 AVCO/Textron Systems, building automation and 

auxiliary services for King Khaled International 

Airport (Saudi Arabia). System contains nine PDP 

11/44s, 378 8086-based computers, and 320 8085-

based security processors,collectively monitoring 

and controlling over 36,000 points. 

 Eastman Kodak Company, quality control system 

monitoring photographic film density. Includes 

film motion control, automatic recognition of film 

density steps, and custom IEEE-488 bus interface. 

 Federal Express, hand-held SuperTracker, carried 

by every FedEx delivery agent. Contains bar-code 

reader, keyboard, 2x20 line display. Performs 

extensive package entry and tracking functions, 

including cross index from airport code to all 

10,000 US zip codes. Includes smart power-off 

sequencing to extend battery life. 

 

 

 

 NASA Goddard Space Flight Center:  

http://www.forth.com/starting-forth/sf0/sf0.html#footnotes
http://www.inventio.co.uk/Hpo2.htm
http://www.inventio.co.uk/Hpo2.htm
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1. Control of 50-foot long, six-joint arm for Space Shuttle simulator. Extensive math routines 

convert two three-axis joystick commands into required joint velocities in six different co-ordinate 

systems. 

2. Multitasking operating system, Forth language compiler, and libraries for UT69R000 radiation-

hardened microprocessor used in Space Shuttle instrumentation. 

3. Development of the Forth-based Small Payload Accommodations Interface Module (SPAIM), 

which interfaces the Shuttle Solar Backscatter Ultraviolet (SSBUV) instrument to the Space 

Shuttle's avionic systems. The SSBUV instrument is used to calibrate ozone-measuring 

instruments aboard NOAA satellites. 

 

 Owens-Corning Fiberglas, Owens-Corning has used Forth for many years as the basic firmware in 

its distributed industrial controllers. These controllers perform a wide variety of functions, 

managing winders, weighing devices, etc., used in the manufacture of various fiberglass products. 

Plants in Korea and Mexico also use FORTH, Inc.'s EXPRESS to provide supervisory control and 

reporting functions. 

 Saturn Corp, distributed HVAC system for entire Saturn automobile assembly plant, controlling 

over two hundred 40 hp. heating - cooling - humidifying units (with Z-80s) over a two-tier 

network using PCs as text and graphical system monitors. Outside air sensors provide inputs for 

intelligent set-point control and economic use of gas heating and chilled-water cooling systems.  

 

 Sacramento Municipal Utilities District (California): photovoltaic arrays in the state capitol 

feature EXPRESS to provide user-configurable live 

trending, historical trending, alarm/exception 

reporting, rule-tracking, I/O system exerciser, 

class-based real-time database, graphical process 

displays, simultaneous multiple vendor I/O system 

scanning, I/O and process simulation for 

development, and multiple remote terminal access 

with full graphics. Custom drivers for the 

Digitronics Sixnet(TM) I/O system were provided 

in one week; EXPRESS already supports Modicon, 

Allen-Bradley, OPTO-22 OPTOMUX and 

PAMUX, plus others. 

 

 

  

 University of Minnesota, PC-based system for telescope control and 

data taking (over IEEE-488 bus), data analysis and graphics display. 

Includes provision for remote observing, using a custom protocol to 

multiplex packets from three independent data streams over a single 

telephone line.  

 VertexRSI (Div. of Tripoint Global), software for custom satellite 

tracking receivers. Includes frequency synthesizer control, remote 

RS-232 command port, vacuum fluorescent graphics display. 

 A mobile phone manufacturer is introducing a new games engine 

derived from the SENDIT project. This uses a Forth-based virtual 

machine to reduce the size of games in the phone, and to permit 

more functionality to be provided in the phone without increasing 

memory size. 
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 A recent consultancy project based on MPE 8051 and ARM hardware, will introduce a new range 

of vending machines to the market. 

 Construction Computer Software (CCS) in Cape Town produce the MARS and CANDY 

applications which are a standard all over the world. The CCS software is an example of a large-

scale Windows application written in ProForth for Windows, and the VFX Forth version already 

consists of over 850,000 lines of code. CCS software was used to plan the new Chai Tak airport in 

Hong Kong. The CCS web site is here. 

 

 Barefoot Auditor is used by Microsoft for collecting information about their own PCs, and was 

written using one of MPE's Forth systems. Barefoot Auditor has been available on several 

magazine cover disks recently, and more information is available from Pathfinder.  

 

 Micross Electronics, use MPE's ProForth for Windows at the heart of their commercial laundry 

control systems, and MPE's Forth 6 cross compilers for the PLCs performing real time control. 

These systems are installed in many countries, and you may have slept in sheets washed by the 

Micross Tracknet control systems. 

 

 Forth virtual machine runs payment terminals: Europay International's Open Terminal 

Architecture (OTA). OTA uses a virtual machine (VM) architecture to deliver payment terminal 

applications directly to payment terminals regardless of their hardware or CPU. The OTA VM has 

been installed on a range of CPUs and is now being deployed. The OTA project involved up to 30 

programmers working in several locations on two continents. OTA is described here. 

There's a catch we must admit. It is that Forth makes you responsible for your computer's efficiency. To 

draw an analogy: a manual transmission is tougher to master than an automatic, yet for many drivers it 

offers improved control over the vehicle. 

Similarly, Forth is tougher to master than traditional high-level languages, which essentially resemble one 

another (i.e., after learning one, it is not difficult to learn another). Once mastered, however, Forth gives 

you the capability to minimize CPU time and memory space, as well as an organizing philosophy by 

which you can dramatically reduce project development time. 

And remember, all of Forth's elements enjoy the same protocol, including operating system (sometimes), 

compiler, interpreters, text editor, virtual memory, assembler, and multiprogrammer. The learning curve 

for Forth is much shorter than that for all these separate elements added together. 

If all of this sounds exciting to you, turn the page and start Forth. 

1. 2007: also see the Wikipedia Forth entry 

2. 2007: after the publication of Starting FORTH, the Forth language was formalized and widely 

implemented in conformance to the ANS Forth standard. 

3. 2007: The ANS Forth Standard was finalized in 1994 and was adopted in near-identical form as the 

ISO Forth Standard. 

4. 2007: Some applications of Forth cited in the original Starting FORTH are now outdated. More 

applications of Forth are described at FORTH, Inc., MPE and other web sites. 

 

http://www.ccssa.com/
http://www.microssautomation.com/
http://www.forth.org.ru/~mlg/std/ota-about/otawords.html
http://en.wikipedia.org/wiki/Forth_programming_language
http://www.complang.tuwien.ac.at/forth/dpans-html/dpans.htm
http://www.forth.com/resources/apps/index.html
http://www.mpeltd.demon.co.uk/forth.htm
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1. Fundamental Forth 

In this chapter we'll acquaint you with some of the unique properties of the Forth language. After a few 

introductory pages we'll have you sitting at a Forth terminal. 

A Living Language 

Imagine that you're an office manager and you've just hired a new, eager assistant. On the first day, you 

teach the assistant the proper format for typing correspondence. (The assistant already knows how to 

type.) By the end of the day, all you have to do is say "Please type this." 

On the second day, you explain the filing system. It takes all morning to explain where everything goes, 

but by the afternoon all you have to say is "Please file this." 

By the end of the week, you can communicate in a kind of shorthand, where "Please send this letter" 

means "Type it, get me to sign it, photocopy it, file the copy, and mail the original." Both you and your 

assistant are free to carry out your business more pleasantly and efficiently. 

Good organization and effective communication require that you 

1. define useful tasks and give each task a name, then 

2. group related tasks together in larger tasks and give each of these a name, and so on. 

Forth lets you organize your own procedures and communicate them to a computer in just this way 

(except you don't have to say "please"). 

As an example, imagine a microprocessor-controlled washing machine programmed in Forth. The 

ultimate command in your example is named WASHER. Here is the definition of WASHER, as written in 

Forth: 

   : WASHER  WASH SPIN RINSE SPIN ; 

In Forth, the colon indicates the beginning of a new definition. The first word after the colon, WASHER, 

is the name of the new procedure. The remaining words, WASH, SPIN, RINSE and SPIN, comprise the 

"definition" of the new procedure. Finally, the semicolon indicates the end of the definition. 

 

Each of the words comprising the definition of WASHER has already been defined in our washing-

machine application. For example, let's look at our definition of RINSE: 

   : RINSE  FAUCETS OPEN  TILL-FULL  FAUCETS CLOSE ; 

In this definition we are referring to things (faucets) as well as actions (open and close). The word TILL-

FULL has been defined to create a "delay-loop" which does nothing but mark time until the water-level 

switch has been activated, indicating that the tub is full. 

If we were to trace these definitions back, we would eventually find that they are all defined in terms of a 

group of very useful commands that form the basis of all Forth systems. For example, a complete ANS 

Forth with all extensions includes 371 such commands. Many of these commands are themselves "colon 

definitions" just like our example words; others are defined directly in the machine language of the 

particular computer. In Forth, a defined command is called a "word."  
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The ability to define a word in terms of other words is called "extensibility." Extensibility leads to a style 

of programming that is extremely simple, naturally well-organized, and as powerful as you want it to be. 

Whether your application runs an assembly line, acquires data for a scientific environment, maintains a 

business application, or plays a game, you can create your own "living language" of words that relate to 

your particular need. 

In this book we'll cover the most useful of the standard Forth commands. 

All This and … Interactive! 

One of Forth's many unique features is that it lets you "execute"  a word by simply naming the word. If 

you're working at a terminal keyboard, this can be as simple as typing in the word and pressing the 

RETURN key. 

Of course, you can also use the same word in the definition of any other word, simply by putting its name 

in the definition. 

Forth is called an "interactive" language because it carries out your commands the instant that you enter 

them. 

 

We're going to give an example that you can try yourself, showing the process of combining simple 

commands into more powerful commands. We'll use some simple Forth words that control your terminal 

screen. But first, let's get acquainted with the mechanics of "talking" to Forth through your terminal's 

keyboard. 

Take a seat at your real or imaginary Forth terminal. We'll assume that someone has been kind enough to 

set everything up for you, or that you have followed all the instructions given for loading Forth on your 

particular computer. 

Now press the key labeled:  

   RETURN 

The computer will respond by saying 

   ok  

The RETURN key is your way of telling Forth to acknowledge your request. The ok is Forth's way of 

saying that it's done everything you asked it to do without any hangups. In this case, you didn't ask it to 

do anything, so Forth obediently did nothing and said ok. 

Now enter this: 

   15 SPACES 
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If you make a typing mistake, you can correct it by hitting the "backspace" key.  Back up to the mistake, 

enter the correct letter, and continue. When you have typed the line correctly, press the RETURN key. 

(Once you press RETURN, it's too late to correct the line.) 

In this book, we use the symbol ↵ to mark the point where you must press the RETURN key. We also 

formatted the computer's output like this (even though the computer does not) to indicate who is typing 

what. 

Here's what has happened: 

   15 SPACES↵   ok  

As soon as you pressed the return key, Forth printed fifteen blank spaces and then, having processed your 

request, responded ok (at the end of the fifteenth space). 

Now enter this: 

   42 EMIT↵* ok  

The phrase "42 EMIT" tells Forth to print an asterisk (we'll discuss this command later on in the book.) 

Here Forth printed an asterisk, then responded ok. 

We can put more than one command on the same line. For example: 

   15 SPACES  42 EMIT  42 EMIT↵     ** ok  

This time Forth printed fifteen spaces and two asterisks. A note about entering words and/or numbers: we 

can separate them from another by as many spaces as we want for clarity. But they must be separated by 

at least one space for Forth to be able to recognize them as words and/or numbers. 

Instead of entering the phrase 

   42 EMIT 

over and over, let's define it as a word called "STAR."  

Enter this: 

   : STAR  42 EMIT ;↵ok  

Here STAR is the name; "42 EMIT" is the definition. Notice that we set off the colon and semicolon from 

adjacent words with a space. Also, to make Forth definitions easy for human beings to read, we 

conventionally separate the name of the definition from its contents with three spaces. 

After you have entered the above definitions and pressed RETURN, Forth responds ok, signifying that it 

has recognized your definition and will remember it. Now enter 

   STAR↵* ok  

Voila! Forth executes your definition of "STAR" and prints an asterisk. 

There is no difference between a word such as STAR that you define yourself and a word such as EMIT 

that is already defined. In this book, however, we will print those words that are already defined in this 

format, so that you can more easily tell the difference. 
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Another system-defined word is CR, which performs a carriage return and line feed at your terminal.  

For example, enter this: 

   CR↵ok  

As you can see, Forth executed a carriage return, then printed ok (on the next line). 

Now try this: 

   CR STAR CR STAR CR STAR↵*** ok 

Let's put a CR in a definition, like this: 

   : MARGIN   CR 30 SPACES ;↵ok  

Now we can enter 

   MARGIN STAR MARGIN STAR MARGIN STAR↵ 

and get three stars lined up vertically, thirty spaces in from the left. 

Our MARGIN STAR combination will be useful for what we intend to do, so let's define 

   : BLIP   MARGIN STAR ;↵ok  

We will also need to print a a horizontal row of stars. So let's enter the following definition (we'll explain 

how it works in a later chapter): 

   : STARS   0 DO  STAR  LOOP ;↵ok  

Now we can say 

   5 STARS↵***** ok  

or 

   35 STARS↵*********************************** ok  

or any number of stars imaginable. 

We will need a word which performs MARGIN, then prints five stars. Let's define it like this: 

   : BAR   MARGIN  5 STARS ;↵ok  

Now we can enter 

   BAR BLIP BAR BLIP BLIP  CR 

and get a letter "F" (for Forth) made up of stars. It should look like this: 

                       ***** 

                       * 

                       ***** 

                       * 

                       * 
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The final step is to make this new procedure a word. Let's call the word "F": 

   : F   BAR BLIP BAR BLIP BLIP  CR ;↵ok  

You've just seen an example of the way simple Forth commands can become a foundation for more 

complex commands. A Forth application, when listed, consists of a series of increasingly powerful 

definitions rather than a sequence of instructions to be executed in order. 

To give you a sample of what a Forth application really looks like, here's a listing of our experimental 

application: 

   ( Large letter F ) 

    : STAR 42 EMIT ; 

    : STARS   0 DO  STAR  LOOP ; 

    : MARGIN  CR 30 SPACES ; 

    : BLIP MARGIN STAR ; 

    : BAR  MARGIN 5 STARS ; 

    : F    BAR BLIP BAR BLIP BLIP CR ; 

 

 

The Dictionary 

Each word and its definition are entered into Forth's "dictionary." The dictionary already contained many 

words when you started, but your own words are now in the dictionary as well. 

When you define a new word, Forth translates your definition into dictionary form and writes the entry in 

the dictionary. This process is called "compiling."  

 

For example, when you enter the line 

   : STAR   [CHAR] * EMIT ;↵ok  

the compiler compiles the new definition (it does the same as "42 EMIT" but doesn't use magic numbers) 

into the dictionary. The compiler does not print the asterisk. 

Once a word is in the dictionary, how is it executed? Let's say you enter the following line directly at your 

terminal (not inside a definition): 

   STAR 30 SPACES↵ 
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This will activate a word called INTERPRET, also known as the "text interpreter." The text interpreter 

scans the input stream, looking for strings of characters separated by spaces. When a string is found, it is 

looked up in the dictionary. If the word is in the dictionary, it is pointed out to a word called EXECUTE. 

EXECUTE executes the definition (in this case an asterisk is printed). Finally, the interpreter says 

everything's "ok." 

 

If the interpreter cannot find the string in the dictionary, he calls the number-runner (called NUMBER). 

NUMBER knows a number when he sees one. If NUMBER finds a number, he runs it off to a temporary 

storage location for numbers. 

 

What happens when you try to execute a word that is not in the dictionary? Enter this and see what 

happens: 

   XLERB↵XLERB ?  

When the text interpreter cannot find XLERB in the dictionary, it tries to pass it off on NUMBER. 

NUMBER shines it on. Then the interpreter returns the string to you with a question mark (Some Forths 

print various error messages along with this.) 
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ANS Forth allows up to thirty-one characters of a name to be stored in the dictionary. A name should 

contain only graphic characters. 

To summarize: when you type a pre-defined word at the terminal, it gets interpreted and then executed. 

Now remember we said that : is a word? When you type the word :, as in 

   : STAR   [CHAR] * EMIT ;↵ 

the following occurs: 

 

The text interpreter finds the colon in the input stream, and points it out to EXECUTE. The compiler 

translates the definition into dictionary form and writes it in the dictionary. When the compiler gets to the 

semicolon, he stops, and execution returns to the text interpreter, who gives the message ok. 

 

 

Say What? 

In Forth, a word is a character or group of characters that have a definition. Almost any character can be 

used in naming a word. The reasons that some of the control characters cannot be used are: 

return because the computer thinks you've finished entering. 

backspace because the computer thinks you are trying to correct a typing error. 

space because the computer thinks it's the end of the word. 

Here is a Forth word whose name consists of two punctuation marks. The word is ." and it is pronounced 

"dot-quote." You can use ." inside a definition to type a string of text at your terminal. Here's an example: 

   : GREET   ." Hello, I speak Forth " ;↵ok  
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We've just defined a word called GREET. Its definition consists of just one Forth word, .", followed by 

the text that we want typed. The quotation mark at the end of the text will not be typed; it marks the end 

of the text. It's called a "delimiter." 

When entering the definition of GREET, don't forget the closing ; to end the definition. 

Let's execute GREET: 

   GREET↵Hello, I speak Forth  ok  
 

The Stack: Forth's Workspace for Arithmetic 

A computer would not be much good if it couldn't do arithmetic. If you never studied computers before, it 

may seem pretty amazing that a computer (or even a pocket calculator) can do arithmetic at all. We can't 

cite all the mechanics in this book, but believe us, it's not a miracle. 

In general, computers perform their operations by breaking everything they do into ridiculously tiny 

pieces of information and ridiculously easy things to do. To you and me, "3 + 4" is just "7," without even 

thinking. To a computer, "3 + 4" is actually a very long list of things to do and remember. 

Without getting too specific, let's say you have a pocket calculator which expects its buttons to be pushed 

in this order: 

 

in order to perform the addition and display the result. Here's a generalized picture of what might occur: 

When you press… 

 

— the number 3 goes into one place (called Box A). 

 

— the intended operation (addition) is remembered somehow. 

 

— the number 4 is stored into a second place (called Box B). 
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— the calculator performs the operation that is stored in the "Next Operation" Box on the contents of the 

number boxes and leaves the result in Box A. 

Many calculators and computers approach arithmetic problems in a way similar to what we've just 

described. You may not be aware of it, but these machines are actually storing numbers in various 

locations and then performing operations on them. 

In Forth, there is one central location where numbers are temporarily stored before being operated on. 

That location is called the "stack." Numbers are "pushed onto the stack," and then operations work on the 

numbers on the stack. 

The best way to explain the stack is to illustrate it. If you enter the following line at your terminal: 

   3 4 + .↵7 ok  

here is what happens, key by key. 

 

Recall that when you enter a number at your terminal, the text interpreter hands it over to NUMBER, who 

runs it to some location. That location, it can now be told, is the stack. In short, when you enter the 

number three from the terminal, you push it onto the stack. 

 

Now the four goes onto the "top" of the stack and pushes the three downward. 
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The next word in the input stream can be found in the dictionary. + has been previously defined to "take 

the top two numbers off the stack, add them, and push the result back onto the stack." 

 

The next word, ., is also found in the dictionary. It has been previously defined to take the number off the 

stack and print it at the terminal. 

Postfix Power 

Now wait, you say. Why does Forth want you to type 

   3 4 + 

instead of 

   3 + 4 

which is more familiar to most people? 

Forth uses "postfix" notation (so called because the operator is affixed after the numbers) rather than 

"infix" notation (so called because the operator is affixed in-between the numbers) so that all words which 

"need" numbers can get them from the stack.  

For example: 

 the word + gets two numbers from the stack and adds them; 

 the word . gets one number from the stack and prints it; 

 the word SPACES gets one number from the stack and prints that many spaces; 

 the word EMIT gets a number that represents a character and prints that character; 

 even the word STARS, which we defined ourselves, gets a number from the stack and prints that 

many stars. 

When all operators are defined to work on the values that are already on the stack, interaction between 

many operations remains simple even when the program gets complex. 

Earlier we pointed out that Forth lets you execute a word in either of two ways: by simply naming it, or 

by putting it in the definition of another word and naming that word. Postfix is part of what makes this 

possible. 

Just as an example, let's suppose we wanted a word that will always add the number 4 to whatever 

number is on the stack (for no other purpose than to illustrate our point). Let's call the word 

   FOUR-MORE 

We could define it this way: 

   : FOUR-MORE 4 + ;↵ 

and test it this way: 
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   3 FOUR-MORE .↵7 ok  

and again: 

   -10 FOUR-MORE .↵-6 ok  

The "4" inside the definition goes onto the stack, just as it would if it were outside a definition. Then the + 

adds the two numbers on the stack. Since + always works on the stack, it doesn't care that the "4" came 

from inside the definition and the three from outside. 

As we begin to give some more complicated examples, the value of the stack and of postfix arithmetic 

will become increasingly apparent to you. The more operators that are involved, the more important it is 

that they all be able to "communicate" with each other. 

Keep Track of Your Stack 

We've just begun to demonstrate the philosophy behind the stack and postfix notation. Before we 

continue, however, let's look more closely at the stack in action and get accustomed to its peculiarities. 

Forth's stack is described as a "last-in, first-out" (LIFO). You can see from the earlier illustration why this 

is so. The three was pushed onto the stack first, then the four pushed on top of it. Later the adding 

machine took the four off first because it was on top. Hence "last-in, first-out." 

In general, the only accessible value at any given time is the top value. Let's use another operation, the . to 

further demonstrate. Remember that each . removes one number from the stack and prints it. Four dots, 

therefore, remove four numbers and print them. 

   2 4 6 8 . . . .↵8 6 4 2 ok  

 

The system reads input from left to right and executes each word in turn. 

 For input, the rightmost value on the screen will end up on the top of the stack. 

 For output, the rightmost value on the screen came from the bottom of the stack. 

Let's see what kind of trouble we can get ourselves into. Type: 

   10 20 30 . . . . 

(that's four dots) then RETURN. What you get is: 

   10 20 30 . . . .↵30 20 10 0 Stack empty 

 

Each dot removes one value. The fourth dot found that there was no value left on the stack to send to the 

terminal, and it told you so. 
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This error is called "stack underflow." (Notice that a stack underflow is not "ok.") 

The opposite condition, when the stack completely fills up, is called "stack overflow." The stack is so 

deep, however, that this condition should never occur except when you've done something terribly wrong. 

It's important to keep track of new words' "stack effects"; that is, the sort of numbers a word needs to 

have on the stack before you execute it, and the sort of numbers it will leave on the stack afterwards. 

If you maintain a list of your newly created words with their meanings as you go, you or anyone else can 

easily understand the word's operations. In Forth, such a list is called a "glossary." 

 

To communicate stack effects in a visual way, Forth programmers conventionally use a special stack 

notation in their glossaries or tables of words. We're introducing the stack notation now so that you'll 

have it under your belt when you begin the next chapter. 

Here is the basic form: 

   ( before -- after ) 

The dash separates the things that should be on the stack (before you execute the word) from the things 

that will be left there afterwards. For example, here's the stack notation for the word .: 

   .   ( n -- ) 

(The letter "n" stands for "number.") This shows that . expects one number on the stack (before) and 

leaves no number on the stack (after). 

Here's the stack notation for the word +. 

   +   ( n1 n2 -- sum ) 
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When there is more than one n, we number them n1, n2, n3, etc., consecutively. The numbers 1 and 2 do 

not refer to a position on the stack. Stack position is indicated by the order in which the items are written; 

the rightmost item on either side of the arrow is the topmost item on the stack. For example, in the stack 

notation of +, the n2 is on top: 

Since you probably have the hang of it, we may somtimes leave out the ↵ symbol. You can usually tell 

where to press "return" because the computer's response is always formatted like this. 

Here's a list of the Forth words you've learned so far, including their stack notations ("n" stands for 

number; "c" stands for character): 

: xxxx yyy ; ( -- ) Creates a new definition with the name xxx, consisting of word or words yyy.  

CR ( -- ) Performs a carriage return and line feed at your terminal. 

SPACES ( n -- ) Prints the given number of blank spaces at your terminal. 

SPACE ( -- ) Prints one blank space at your terminal. 

EMIT ( c -- ) Transmits a character to the output device. 

." xxx" ( -- ) 
Prints the character string xxx at your terminal. The " character terminates the 

string.  

+ 
( n1 n2 -- sum 

) 
Adds.  

. ( n -- ) Prints a number, followed by one space.  

In the next chapter we'll talk about getting the computer to perform some fancier arithmetic. 

Review of Terms 

Compile 

to generate a dictionary entry in computer memory from source text (the written-out form of a 

definition). Distinct from "execute." 

Dictionary 

in Forth, a list of words and definitions including both "system" definitions (pre-defined) and 

"user" definitions (which you invent). A dictionary resides in computer memory in compiled form. 

Execute 

to perform. Specifically, to execute a word is to perform the operations specified in the compiled 

definition of the word. 

Extensibility 

a characteristic of a computer language which allows a programmer to add new features or modify 

existing ones. 

Glossary 

a list of words defined in Forth, showing their stack effects and an explanation of what they do, 

which serves as a reference for programmers. 

Infix notation 

the method of writing operators between the operands they affect, as in "2 + 5." 

Input stream 

the text to be read by the text interpreter. This may be text that you have just typed in at your 

terminal, or it may be text that is stored on disk. 

Interpret 

(when referring to Forth's text interpreter) to read the input stream, then to find each word in the 

dictionary or, failing that, to convert it to a number. 

LIFO 

(last-in, first-out) the type of stack which Forth uses. A can of tennis balls is a LIFO structure; the 

last ball you drop in is the one you must remove first. 

Postfix notation 

the method of writing operators after the operands they affect, as in "2 5 +" for "2 + 5." Also 

known as Revers Polish Notation. 

 



28 
 

Stack 

in Forth, a region of memory which is controlled in such a way that data can be stored or removed 

in a last-in, first-out (LIFO) fashion. 

Stack overflow 

the error condition that occurs when the entire area of memory allowed for the stack is completely 

filled with data. 

Stack underflow 

the error condition that occurs when an operation expects a value on the stack, but there is no valid 

data on the stack. 

Word 

in Forth, the name of a definition. 

 

Problems — Chapter 1 

Note: before you work these problems, remember these simple rules: 

   Every : needs a ;. 

and 

   Every ." needs a ". 

1. Define a word called GIFT which, when executed, will type out the name of some gift. For 

example, you might try: 
2.    : GIFT  ." Bookends " ; 

3. Now define a word called GIVER which will print out a person's first name. Finally, define a 

word called THANKS which includes the new Forth words GIFT and GIVER, and prints out a 

message something like this: 

   Dear Stephanie,   thanks for the Bookends. ok 

[answer] 

4. Define a word called TEN.LESS which takes a number on the stack, subtracts ten, and returns the 

answer on the stack. (Hint: you can use +.) [answer] 

5. After entering the words in Prob. 1, enter a new definition for GIVER to print someone else's 

name, then execute THANKS again. Can you explain why THANKS still prints out the first 

giver's name? [answer] 

 

http://www.forth.com/starting-forth/sf1/1-1.forth
http://www.forth.com/starting-forth/sf1/1-2.forth
http://www.forth.com/starting-forth/sf1/1-3.forth
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2. How to Get Results 

In this chapter, we'll dive right into some specifics that you need to know before we go on. Specifically, 

we'll introduce some of the arithmetic instructions besides + be able to write mathematical equations in 

Forth. 

Forth Arithmetic — Calculator Style 

Unlike calculators, computer terminals don't have special keys for multiplication or division. Instead we 

use * and /.  

Here are the four simplest integer-

arithmetic operators in Forth: 

+ ( n1 n2 -- sum ) Adds. 

- ( n1 n2 -- diff ) Subtracts (n1-n2). 

* ( n1 n2 -- prod ) Multiplies. 

/ ( n1 n2 -- quot ) Divides (n1/n2). 

In the first chapter, we learned that we can add two numbers by putting them both on the stack, then 

executing the word +, then finally executing the word . (dot) to get the result printed at our terminal. 

17 5 + .↵22 ok  

We can use this method with all of Forth's arithmetic operators. In other words, we can use Forth like a 

calculator to get answers, even without writing a "program." Try a multiplication problem: 

7 8 * .↵56 ok  

By now we've seen that the operator comes after the numbers. In the case of subtraction and division, 

though, we must also consider the order of numbers ("7 - 4" is not the same as "4 - 7"). 

Just remember this rule: 

To convert to postfix, simply move the 

operator to the end of the expression: 

Infix Postfix 

3 + 4 3 4 + 

500 - 300 500 300 - 

6 x 5 6 5 * 

20 / 4 20 4 / 

So to do the subtraction problem: 

7 - 4 = 

simply type in 

7 4 - .↵3 ok  

For Adventuresome Newcomers Sitting at a Terminal 

If you're one of those people who like to fool around and figure things out for themselves without reading 

this book, then you're bound to discover a couple of weird things. First off, as we told you, these 
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operators are integer operators. That not only means that you can't do calculations with decimal values, 

like 

10.00 2.25 + 

it also means that you can only get integer results, as in 

21 4 / .↵5 ok  instead of 5.25 ok  

Another thing is that if you try to multiply: 

10000000 1000 * . 

or some such large numbers, you'll get a crazy answer. So we're telling you up front that with the 

operators introduced so far and with . to print the results, you can't have any numbers that are higher than 

+2147483647 or lower than -2147483648. Numbers within this range are called "single-length signed 

numbers." 

Notice, in the list of Forth words a few pages back, the letter "n," which stands for "number." Since Forth 

uses single-length numbers more often than other types of numbers, the "n" signifies that the number 

must be single-length. And yes, there are other operators that extend this range ("double-length" 

operators, which are indicated by "d"). 

All of these mysteries will be explained in time, so stay tuned. 

The order of numbers stays the same. Let's try a division problem: 

20 4 / .↵5 ok  

The word / is defined to divide the second number on the stack by the top number. 

 

What do you do if you have more than one operator in an expression, like: 

4 + (17 * 12) 

you ask? Let's take it step-by-step: the parentheses tell you to first multiply seventeen by twelve, then add 

four. So in Forth you would write: 
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17 12 * 4 + .↵208 ok  

and here's why: 

 

17 and 12 go onto the stack. * multiplies them and returns the result. 

 

Then the four goes onto the stack, on top of 204. + rolls out the adding machine and adds them together, 

returning only the result. 

Or suppose you want to add five numbers. You can do it in Forth like this: 

17 20 + 132 + 3 + 9 + .↵181 ok  

 

Now here's an interesting problem: 

(3 + 9) * (4 + 6) 

To solve it we have to add three to nine first, then add four to six, then finally multiply the two sums. In 

Forth, we can write 

3 9 +  4 6 +  * .↵120 ok  
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Notice that we very conveniently saved the sum twelve on the stack while we went on about the business 

of adding four to six. 

Remember that we're not concerned yet with writing definitions. We are simply using Forth as a 

calculator. 

If you're like most beginners, you probably would like to try your hand at a few practice problems until 

you feel more comfortable with postfix 

. 

Postfix Practice Problems (Quizzie 2-a) 

Convert the following infix equations to postfix "calculator style." For example, 

ab + c 

would become 

a b * c + 

1. c(a+b) 

2. (3a - b) / 4 + c 

3. (0.5 ab) / 100 

4. (n + 1) / n 

5. x(7x + 5) 

 

Convert the following postfix expressions to infix: 

6. a b - b a + / 

7. a b 10 * / 

[answer] 

 

Forth Arithmetic — Definition Style 

 

 

In Chap. 1 we saw that we could define new words in terms of numbers and other pre-defined words. 

Let's explore some further possibilities, using some of our newly-learned math operators. 

Let's say we want to convert various measurements to inches. We know that 

1 yard = 36 inches 

and 

1 foot = 12 inches 

so we can define these two words: 

http://www.forth.com/starting-forth/sf2/quizzie-2-a.forth
http://www.forth.com/starting-forth/sf1/sf1.html
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: YARDS>IN  36 * ;↵ok  

: FT>IN     12 * ;↵ok  

where the names symbolize "yards-to-inches" and "feet-to-inches." Here's what they do: 

10 YARDS>IN .↵360 ok  

2 FT>IN .↵24 ok  

If we always want our result to be in inches, we can define: 

: YARDS  36 * ;↵ok  

: FEET   12 * ;↵ok  

: INCHES   ;↵ok  

So that we can use the phrase 

10 YARDS  2 FEET +  9 INCHES +  .↵393 ok  

Notice that the word INCHES doesn't do anything except remind the human user what the nine is for. If 

we really want to get fancy, we can add these three definitions: 

: YARD   YARDS ;↵ok  

: FOOT   FEET ;↵ok  

: INCH   ;↵ok  

so that the user can enter the singular form of any of the nouns and still get the same result: 

1 YARD  2 FEET +  1 INCH +  .↵61 ok  

2 YARDS  1 FOOT + .↵84 ok  

For Semantic Freaks 

In mathematics, the word "argument" refers to an independent variable of a function. Computer linguists 

have borrowed this term to refer to numbers being operated on by operators. They have also borrowed the 

word "parameters" to describe pretty much the same thing. 

So far we have only defined words whose definitions contain a single math operator. But it's perfectly 

possible to put many operators inside a definition, if that's what you need to do. 

Let's say we want a word that computes the sum of five numbers on the stack. A few pages back we 

summed five numbers like this: 

17 20 + 132 + 3 + 9 + .↵181 ok  

But we can also enter 

17 20 132 3 9 + + + + .↵181 ok  
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We get the same answer, even though we've clustered all the numbers into one group and all the operators 

into another group. We can write our definition like this: 

: 5#SUM  + + + + ;↵ok  

and execute it like this: 

17 20 132 3 9 5#SUM .↵181 ok  

If we were going to keep 5#SUM for future use, we could enter it into our ever-growing glossary, along 

with a note that it "expects five arguments" on the stack, which it will add together. 

For Beginners Who Like Word Problems 

 

If a jet plane flies at an average air speed of 600 mph and if it flies with a tail wind of 25 mph, how far 

will it travel in five hours? 

If we define 

: FLIGHT-DISTANCE   + * ; 

we could enter 

5 600 25 FLIGHT-DISTANCE .↵3125 ok  

Try it with different values, including head winds (negative values). 

Here is another equation to write a definition for: 

(a + b) * c 
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As we saw in Quizzie 2-a, this expression can be written in postfix as 

c a b + * 

Thus we could write our definition 

: SOLUTION   + * ;↵ok  

as long as we make sure that we enter the arguments in the proper order; 

c a b SOLUTION 

 

Definition Style Practice Problems (Quizzie 2-b) 

Convert the following infix expressions into Forth definitions and show the stack order required by your 

definitions. Since this is Quizzie 2-b, you can name your definitions 2B1, 2B2, etc. 

ab + c would become : 2B1 * + ; 

which expects this stack order: ( c b a -- result) 

1. (a - 4b) / 6 + c 

2. a / (8b) 

3. 0.5 ab / 100 

4. a(2a + 3) 

5. (a - b) / c  

[answer] 

 

The Division Operators 

The word / is Forth's simplest division operator. Slash supplies only the quotient; any remainder is lost. If 

you type: 

22 4 / .↵5 ok  

You get only the quotient five, not the remainder two. 

If you're thinking of a pocket calculator's per-cent operator, then five is not the full answer. 

But / is only one of several division operators supplied by Forth to give you the flexibility to tell the 

computer exactly what you want it to do. 

For example, let's say you want to solve this problem: "How many dollar bills can I get in exchange for 

22 quarters?" The real answer, of course, is exactly 5, not 5.5. A computerized money changer, for 

example, would not know how to give you 5.5 dollar bills. 

Here are two more Forth division operators: 

/MOD ( n1 n2 -- rem quot ) Divides. Returns the remainder and quotient.  

MOD ( n1 n2 -- rem ) Returns the remainder from division.  

http://www.forth.com/starting-forth/sf2/quizzie-2-b.forth
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These operators are both signed, and "truncating." We'll see what this means in the chapter on computer 

numbers. 

/MOD gives both the remainder and the quotient; MOD (from "modulo") gives the remainder only. (For 

/MOD, the stack notation in the table indicates that the quotient will be on top of the stack, and the 

remainder below. Remember, the rightmost represents the topmost.) 

Let's try the first one: 

22 4 /MOD . .↵5 2 ok 

 

Here /MOD performs the division and puts both the quotient and the remainder on the stack. The first dot 

prints the quotient because the quotient was on top. 

With what we've learned so far, we can easily define this word: 

: QUARTERS  4 /MOD . ." ones and " 

    . ." quarters " ; 

So that you can type: 

22 QUARTERS 

with this result: 

22 QUARTERS↵5 ones and 2 quarters ok  

The second word in the table, MOD, leaves only the remainder. For example in: 

22 4 MOD .↵2 ok  

the two is the remainder. 
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Stack Maneuvers 

If you worked Prob. 6 in the last set, you discovered that the infix equation 

(a - b) / c 

cannot be solved with a definition unless there is some way to rearrange values on the stack. 

Well, there is a way: by using a "stack manipulation operator" called SWAP. 

SWAP 

The word SWAP is defined to switch the order of the top two stack items. 

 

As with the other stack manipulation operators, you can test SWAP at your terminal in "calculator style"; 

that is, it doesn't have to be contained within a definition. 

First enter 

1 2 . .↵2 1 ok  

then again, this time with SWAP: 

1 2 SWAP . .↵1 2 ok  

Thus Prob. 6 can be solved with this phrase: 

- SWAP / 

with ( c a b -- ) on the stack. 

Let's give a, b, and c these test values: 

a = 10 

 

b = 4 

 

c = 2 
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then put them on the stack and execute the phrase, like so: 

2 10 4 - SWAP / .↵3 ok  

Here is a list of several stack manipulation operators, including SWAP 

SWAP ( n1 n2 -- n2 n1 ) Reverses the top two stack items.  

DUP ( n -- n n ) Duplicates the top stack item.  

OVER ( n1 n2 -- n1 n2 n1 ) Makes a copy of the second item and pushes it on top.  

ROT ( n1 n2 n3 -- n2 n3 n1 ) Rotates the third item to the top.  

DROP ( n -- ) Discards the top stack item.  

 

 

DUP 

 

The next stack manipulation operator on the list, DUP, simply makes a second copy (duplicate) of the top 

stack item. 

For example, if we have "a" on the stack, we can compute: 

a
2
 

as follows: 

DUP * 

in which the following steps occur: 
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Operation Contents of stack 

  a 

DUP a a 

* a
2
 

 

OVER 

Now somebody tells you to evaluate the expression: 

a * (a + b) 

given the following stack order: 

( a b -- ) 

 

But, you say, I'm going to need a new manipulation operator: I want two copies of the "a," and the "a" is 

under the "b." Here's the word you need: OVER. OVER simply makes a copy of the "a" and leapfrogs it 

over the "b": 

( a b -- a b a ) 

Now the expression 

a * (a + b) 

can easily be written 

OVER + * 

Here's what happens: 

Operation Contents of stack 

  a b 

OVER a b a 

+ a (b+a) 

* a*(b+a) 

When writing equations in Forth, it's best to "factor them out" first. For example, if somebody asks you to 

evaluate: 

a
2
 + ab 

in Forth, you'll find it quite complicated (and maybe even impossible) using the words we've introduced 

so far ... unless you factor out the expression to read: 

a * (a + b) 

which is the expression we just evaluated so easily. 
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ROT 

The fourth stack manipulator on the list is ROT (pronounced rote), which is short for "rotate." ROT 

transforms the top three stack values from ( a b c ) to ( b c a ). 

 

For example, if we need to evaluate the expression: 

ab - bc 

we should first factor out the "b"s: 

b * (a - c) 

Now if our starting-stack order is this: 

( c b a -- ) 

we can use: 

ROT - * 

in which the following steps will occur: 

Operation Contents of stack 

  c b a 

ROT b a c 

- b (a-c) 

* b*(a-c) 
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DROP 

The final stack manipulation operator on the list is DROP. All it does is discard the top stack value. 

 

Pretty simple, huh? We'll see some good uses for DROP later on. 

 

A Handy Hint 

A Non-destructive Stack Print 

Beginners who are just learning to manipulate numbers on the stack in useful ways very often find 

themselves typing a series of dots to see what's on the stack after their manipulations. The problem with 

dots, though, is that they don't leave the numbers on the stack for future manipulation. 

The Forth word .S prints out all the values that happen to be on the stack "non-destructively"; that is, 

without removing them. Let's test it, first with nothing on the stack: 

.S↵<0>  ok 

As you can see, in this version of .S, we see at least one number. This is the number of items actually on 

the stack. 

Now let's try with numbers on the stack: 

1 2 3 .S↵<3> 1 2 3  ok  
 

ROT .S <3>↵2 3 1  ok  
 

 

Stack Manipulation and Math Definitions (Quizzie 2-c) 

1. Write a phrase which flips three items on the stack, leaving the middle number in the middle; that 

is, 
2. a b c 

becomes 

c b a 

3. Write a phrase that does what OVER does, without using OVER. 

4. Write a definition called -ROT, which rotates the top three stack items in the opposite direction 

from ROT; that is, 

a b c 

becomes  
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c a b 

5. Write definitions for the following equations, given the stack effects shown: 

(n+1) / n ( n -- result ) 

x(7x + 5) ( x -- result ) 

9a
2
 - ba ( a b -- result ) 

[answer] 

 

Playing Doubles 

The next four stack manipulation operators should look vaguely familiar: 

2SWAP ( d1 d2 -- d2 d1 ) Reverses the top two pairs of numbers.  

2DUP ( d -- d d ) Duplicates the top pair of numbers.  

2OVER ( d1 d2 -- d1 d2 d1 ) Makes a copy of the second pair of numbers and pushes it on top.  

2DROP ( d -- ) Discards the top pair of numbers.  

 

The prefix "2" indicates that these stack manipulation operators handle numbers in pairs.  The letter "d" 

in the stack effects column stands for "double." "Double" has a special significance that we will discuss 

when we talk about "n" and "u." 

The "2"-manipulators listed above are so straightforward, we won't even bore you with examples. 

One more thing: there are still some stack manipulators we haven't talked about yet, so don't go crazy by 

trying too much fancy footwork on the stack. 

Here's a list of the Forth words we've covered in this chapter: 

+ ( n1 n2 -- sum ) Adds.  

- ( n1 n2 -- diff ) Subtracts (n1-n2).  

* ( n1 n2 -- prod ) Multiplies.  

/ ( n1 n2 -- quot ) Divides (n1/n2).  

/MOD ( n1 n2 -- rem quot ) Divides. Returns the remainder and quotient.  

MOD ( n1 n2 -- rem ) Returns the remainder from division.  

SWAP ( n1 n2 -- n2 n1 ) Reverses the top two stack items.  

DUP ( n -- n n ) Duplicates the top stack item.  

OVER ( n1 n2 -- n1 n2 n1 ) Makes a copy of the second item and pushes it on top.  

http://www.forth.com/starting-forth/sf2/quizzie-2-c.forth
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ROT ( n1 n2 n3 -- n2 n3 n1 ) Rotates the third item to the top.  

DROP ( n -- ) Discards the top stack item.  

2SWAP ( d1 d2 -- d2 d1 ) Reverses the top two pairs of numbers.  

2DUP ( d -- d d ) Duplicates the top pair of numbers.  

2OVER ( d1 d2 -- d1 d2 d1 ) Makes a copy of the second pair of numbers and pushes it on top.  

2DROP ( d -- ) Discards the top pair of numbers.  

 

Review of Terms 

Double-length numbers 

integers which encompass a range of over -18,446,744,073,709,551,615 to 

+18,446,744,073,709,551,615 (and which we'll introduce officially in Chap. 7). 

Single-length numbers 

integers which fall within the range of -2 billion to +2 billion: the only numbers which are valid as 

the arguments or results of any of the operators we've discussed so far. 

 

Problems — Chapter 2 

1. What's the difference between DUP DUP and 2DUP? [answer] 

2. Write a phrase which will reverse the order of the top four items on the stack; that is, 

( 1 2 3 4 -- 4 3 2 1 ) [answer] 

3. Write a definition called  

3DUP 

which will duplicate the top three numbers on the stack; for example, 

( 1 2 3 -- 1 2 3 1 2 3 ) [answer] 

4. Write definitions for the following infix equations, given the stack effects shown: 

a
2
 + ab + c ( c a b -- result ) [answer] 

 

(a-b) / (a+b) ( a b -- result ) [answer] 

5. Write a set of words to compute prison sentences for hardened criminals such that the judge can 

enter: 

6. CONVICTED-OF ARSON HOMICIDE TAX-EVASION↵ok  
 

7. WILL-SERVE↵35 years ok  

or any series of crime beginning with the word CONVICTED-OF and ending with WILL-

SERVE. Use these sentences 

HOMICIDE 20 years 

ARSON 10 years 

BOOKMAKING 2 years 

TAX-EVASION 5 years 

[answer] 

http://www.forth.com/starting-forth/sf7/sf7.html
http://www.forth.com/starting-forth/sf2/2-1.forth
http://www.forth.com/starting-forth/sf2/2-2.forth
http://www.forth.com/starting-forth/sf2/2-3.forth
http://www.forth.com/starting-forth/sf2/2-4.forth
http://www.forth.com/starting-forth/sf2/2-5.forth
http://www.forth.com/starting-forth/sf2/2-6.forth
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8. You're the inventory programmer at Maria's Egg Ranch. Define a word called  

EGG.CARTONS 

which expects on the stack the total number of eggs laid by the chickens today and prints out the 

number of cartons that can be filled with a dozen each, as well as the number of left-over eggs. 

[answer] 

«previous next»  

 

 

 

http://www.forth.com/starting-forth/sf2/2-7.forth
http://www.forth.com/starting-forth/sf1/sf1.html
http://www.forth.com/starting-forth/sf1/sf1.html
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3. The Editor (and Staff) 

Another Look at the Dictionary 

If you've been experimenting with a real computer, you may have discovered some things we haven't 

mentioned yet. In any case, it's time to mention them. 

Discovery One: 

You can define the same word more than once in different ways — only the most recent definition will be 

executed. 

For example, if you have entered: 

: GREET  ." Hello, I speak Forth. " ;↵ok  

then you should get this result: 

GREET↵Hello, I speak Forth. ok  

And if you redefine: 

: GREET  ." Hi there! " ;↵ok  

you get the most recent definition: 

GREET↵Hi there! ok  

Has the first GREET been erased? No, it's still there, but the most recent GREET is executed because of 

the search order. The text interpreter always starts at the "back of the dictionary" where the most recent 

entry is. The definition he finds first is the one you defined last. This is the one he shows to EXECUTE. 

We can prove that the old GREET is still there. Try this: 

FORGET GREET↵ok  

and 

GREET↵Hello, I speak Forth. ok  

(the old GREET again!).  

 

The word FORGET looks up a given word in the dictionary and, in effect, removes it from the dictionary 

along with anything you may have defined since that word. FORGET, like the interpreter, searches 

starting from the back; he only removes the most recently defined versions of the word (along with any 

words that follow). So now when you type GREET at the terminal, the interpreter finds the original 

GREET. 
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FORGET is a good word to know; he helps you to weed out your dictionary so it won't overflow. (The 

dictionary takes up memory space, so as with any other use of memory, you want to conserve it.) 

Some Forths do not have FORGET. In that case you need to plan the forgetting in advance, e.g.: 

MARKER -work 

defines the null definition -work to mark the current system state for you. When you execute -work at 

some later time, the system state is restored to that in effect when -work was defined. In particular, all 

words defined after the marker word -work are completely removed from the dictionary. 

Discovery Two: 

When you enter definitions from the terminal (as you have been doing), your source text  is not saved. 

Only the compiled form of your definition is saved in the dictionary. So what if you want to make a 

minor change to a word already defined? This is where a "text editor" comes in. With this editor, you can 

save your source text and modify it if you want to. In this day and age we can assume that everyone has 

access to a text editor. The documentation of your Forth system should discuss the procedures to easily 

use your favorite text editor from within the Forth environment. (On a modern OS, double-click the file 

you want to edit. After finishing your editing business, type INCLUDE on the Forth command line. Add 

at least one trailing space, then drag your file in the Forth window and drop it on the command line. Type 

↵.) 

A text editor stores your source text on disk. So we'd better introduce the disk and the way the Forth 

system uses it. 

 

How Forth Uses the Disk 

All Forth systems use disk memory. Even though disk memory is not absolutely necessary for a Forth 

system, it's difficult to imagine Forth without it. 

To understand what disk memory does, compare it with computer memory (RAM). The difference is 

analogous to the difference between a filing cabinet and a rolling card-index.  

So far you've been using computer memory, which is like the card index. The computer can access this 

memory almost instantaneously, so programs that are stored in RAM can run very fast. Unfortunately, 

this kind of memory is sometimes very limited (e.g. in embedded controllers) and relatively expensive. 

On the other hand, the disk is called a "bulk memory" device, because, like a filing cabinet, it can store a 

lot of information at a much cheaper price per unit of information than the memory inside the computer. 

Both kinds of memory can be written to and read from. 

The compiler compiles all dictionary entries into computer memory so that the definitions will be quickly 

accessible. The perfect place to store source text, however, is on the disk, which is what Forth does. You 

can either send source text directly from the keyboard to the interpreter (as you have been doing), or you 

can save your source text on the disk and then later read it off the disk and send it to the text interpreter. 
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Disk memory is divided into units called "blocks." Each block holds 1,024 characters of source text or 

binary data, traditionally organized as 16 lines of 64 characters. The ANS Forth standard does not specify 

how many blocks there are. The documentation of your Forth system should tell you this. 

With current Forths, disk memory resides in OS files. There are ways to attach specific OS files to the 

"Forth disk." Due to the special 16 by 64 format of Forth blocks, OS utilities consider them as binary data 

and cannot generally print, list, filter or edit them. Forth systems have standardized facilities to handle 

some of these tasks by themselves. 

Assuming you are using iForth, then the following should instruct disk memory to come from some file: 

USE blocks.forth↵ok  

To list a block, simply type the block-number and the word LIST, as in: 

1 LIST 

 0 

 1 ( Large letter F                             MHX 21:29 07/01/89) 

 2 

 3 : STAR    [CHAR] * EMIT ; 

 4 : STARS   0 DO  STAR  LOOP ; 

 5 : MARGIN  CR 30 SPACES ; 

 6 : BLIP    MARGIN STAR ; 

 7 : BAR     MARGIN 5 STARS ; 

 8 : F       BAR BLIP BAR BLIP BLIP CR ; 

 9 

10 

11 

12 

13 

14 

15 

ok 

The above is what a block looks like when it's listed on your terminal.  

To give you a better idea of how all of this could be used, we'll assume that block 1 contains the 

definitions shown above. Except for line 1, everything looks familiar: these are the definitions you used to 

print a large letter "F" at your terminal. 

Now if you were to type: 

1 LOAD 

F 

you would send block 1 to the input stream and then on to the text interpreter. The text interpreter does 

not care where his text comes from. Recognizing the colons, he will have all the definitions compiled, and 

then will execute the new word F. 

http://www.forth.com/starting-forth/sf3/blocks.forth
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Now for the unfinished business: line 1. The words inside the parentheses are for humans only; they are 

neither compiled nor executed. The word ( ("left parenthesis") tells the text interpreter to skip all the 

following text up to the terminating right parenthesis. Because ( is a word, it must be set off with a space. 

The closing parenthesis is not a word, it is simply a character that is looked for by (, called a delimiter. 

(Recall that the delimiter for ." is the closing quote mark.) 

To summarize, the three ANS Forth commands we've learned so far that concern disk blocks are: 

LIST  ( n -- ) Lists a disk block. 

LOAD  ( n -- ) Loads a disk block (compiles or executes). 

( xxx)  ( -- ) Causes the string xxx to be ignored by the text interpreter. The character ) is the delimiter. 

 

Block-buffer Basics 

We have discussed blocks mainly because of historical reasons. Blocks are hardly ever used for source 

text storage any more. The preferred way to handle source is in standard text files, using the word 

INCLUDE to load them: 

INCLUDE blocks.forth↵ok  

The main advantage is that blocks.forth can be edited and managed with standard text file utilities. 

However, now we're at it, we'll mention a few other words to access and modify blocks on disk. 

The basic word that brings a block in from the disk, after first finding an available buffer and storing its 

contents on disk if necessary, is BLOCK. For instance, if you say 

1 BLOCK 

 

the system will copy block 1 of the currently open file into one of the system buffers. BLOCK also leaves 

on the stack the address of the beginning of the buffer (1024 bytes, remember) that it used. The contents 

of this buffer are guaranteed to stay valid until you execute a word from the set of procedures with 

"multitasking impact," like EMIT or TYPE. If you at any time modify the buffer contents and then 

execute the word UPDATE, Forth will remember to first write the block back to disk when it needs to 

reuse the buffer. If, for some reason, you execute UPDATE and then decide that you don't want to have 

the blocks rewritten after all, use EMPTY-BUFFERS to invalidate them. This works because Forth does 

not immediately write the disk after you use UPDATE. To force writing out the buffers right now, use the 

word FLUSH. 

 

Here's a list of the Forth words we've covered in this chapter: 

USE xxx  ( -- ) Designate OS text file xxx as the "Forth disk." 

LIST  
( n -- 

) 
Lists a disk block. 

LOAD  
( n -- 

) 
Loads a disk block (compiles or executes). 

http://www.forth.com/starting-forth/sf3/blocks.forth
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( xxx)  ( -- ) 
Causes the string xxx to be ignored by the text interpreter. The character ) is the 

delimiter.  

UPDATE  ( -- ) 

Marks the most recently referenced block as modified. The block will later be 

automatically transferred to mass storage if its buffer is needed to store a different 

block or if FLUSH is executed. 

EMPTY-

BUFFERS  
( -- ) 

Marks all block buffers as empty without necessarily affecting their actual contents. 

Updated blocks are not written to mass storage. 

BLOCK  
( u -- 

addr ) 

Leaves the address of the first byte in block u. If the block is not already in memory, 

it is transferred from mass storage into whichever memory buffer has been least 

recently accessed. If the block occupying that buffer has been updated (i.e., 

modified), it is rewritten onto mass storage before block u is read into the buffer. 

INCLUDE 

xxx  
( -- ) Load the text file xxx (compiles or executes). 

FORGET 

xxx  
( -- ) Forgets all definitions back to and including xxx. 

MARKER 

xxx  
( -- ) 

Creates a word xxx which, when executed, restores the dictionary to the state it had 

just prior to the definition of xxx. In particular, remove xxx and all subsequent word 

definitions. 

 

Review of Terms 

Block 

in Forth, a division of disk memory containing up to 1024 characters of source text. 

Buffer 

a temporary storage area for data. 

Null definition 

a definition that does nothing, written in the form: 

: NAME ; 

that is, a name only will be compiled into the dictionary. A null definition serves as a "bookmark" 

in the dictionary, for FORGET to find. 

Pointer 

a location in memory where a number can be stored (or changed) as a reference to something else. 

Source text 

in Forth, the written-out form of a definition or definitions in English-like words and punctuation, 

as opposed to the compiled form that is entered into the dictionary. 

«previous next»  

http://www.forth.com/starting-forth/sf2/sf2.html
http://www.forth.com/starting-forth/sf2/sf2.html
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4. Decisions, Decisions… 

In this chapter we'll learn how to program the computer to make "decisions." This is the moment when 

you turn your computer into something more than an ordinary calculator. 

The Conditional Phrase 

Let's see how to write a simple decision-making statement in Forth. Imagine we are programming a 

mechanical egg-carton packer. Some sort of mechanical device has counted the eggs on the conveyor belt, 

and now we have the number of eggs on the stack. The Forth phrase: 

    12 = IF  FILL-CARTON  THEN 

tests whether the number on the stack is equal to 12, and if it is, the word FILL-CARTON is executed. If 

it's not, execution moves right along to the words that follow THEN. 

 

The word = takes two values of the stack and compares them to see if they are equal. 

 

If the condition is true, IF allows the flow of execution to continue with the next word in the definition. 

 

But if the condition is false, IF causes the flow of execution to skip to THEN, from which point execution 

will proceed. 

Let's try it. Define this example word: 

    : ?FULL  12 = IF  ." It's full "  THEN ;↵ok  

11 ?FULL↵ok  

12 ?FULL↵It's full ok  
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Notice: an IF...THEN statement must be contained within a definition. You can't just enter these words in 

"calculator style." 

Don't be misled by the traditional English meanings of the Forth words IF and THEN. The words that 

follow IF are executed if the condition is true. The words that follow THEN are always executed, as 

though you were telling the computer, "After you make the choice, then continue with the rest of the 

definition." (In this example, the only word after THEN is ;, which ends the definition.) 

Let's look at another example. This definition checks whether the temperature of a laboratory boiler is too 

hot. It expects to find the temperature on the stack: 

    : ?TOO-HOT  220 > IF ." Danger -- reduce heat " THEN ; 

If the temperature on the stack is greater than 220, the danger message will be printed at the terminal. 

You can execute this one yourself, by entering the definition, then typing in a value just before the word. 

    290 ?TOO-HOT↵Danger -- reduce heat ok  

130 ?TOO-HOT↵ok  

Remember that every IF needs a THEN to come home to. Both words must be in the same definition. 

 

Here is a partial list of comparison operators that you can use before an IF...THEN statement: 

=  

<  

>  

0=  

0<  

0>  

The words < and > expect the same stack order as the arithmetic operators, that is: 

Infix   Postfix 

2 < 10 is equivalent to 2 10 < 

17 > -39 is equivalent to 17 -39 > 



52 
 

The words 0=, 0< and 0> expect only one value on the stack. The value is compared with zero. 

Another word, INVERT, doesn't test any value at all; it simply reverses whatever condition has just been 

tested. For example, the phrase: 

    ... = INVERT IF ... 

will execute the words after IF, if the two numbers on the stack are not equal. 

The Alternative Phrase 

Forth allows you to provide an alternative phrase in an IF statement, with the word ELSE. 

The following example is a definition which tests whether a given number is a valid day of the month: 

    : ?DAY  32 < IF  ." Looks good " ELSE  ." no way " THEN ; 

If the number on the stack is less than thirty-two, the message "Looks good" will be printed. Otherwise, 

"no way" will be printed. 

 

Imagine that IF pulls a railroad-track switch, depending on the outcome of the test. Execution then takes 

one of two possible routes, but either way, the tracks rejoin at the word THEN. 

By the way, in computer terminology, this whole business of rerouting the path of execution is called 

"branching."  

Here's a more useful example. You know that dividing any number by zero is impossible, so if you try it 

on a computer, you'll get an incorrect answer. We might define a word which only performs division if 

the denominator is not zero. The following definition expects stack items in this order: 

    ( numerator denominator -- quotient ) 

    : /CHECK 

      DUP 0= IF  ." invalid " DROP 

           ELSE / 

           THEN ; 

 

Notice that we first have to DUP the denominator because the phrase 

    0= IF 

will destroy it in the process. 

Also notice that the word DROP removes the denominator if division won't be performed, so that whether 

we divide or not, the stack effect will be the same. 
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Nested IF...THEN Statements 

It's possible to put an IF...THEN (or IF...ELSE...THEN) statement inside another IF...THEN statement. In 

fact, you can get as complicated as you like, so long as every IF has one THEN. 

Consider the following definition, which determines the size of commercial eggs (extra large, large, etc.) 

given their weight in ounces per dozen: 

    : EGGSIZE    DUP  18 < IF  ." reject "      ELSE 

            DUP  21 < IF  ." small "       ELSE 

            DUP  24 < IF  ." medium "      ELSE 

            DUP  27 < IF  ." large "       ELSE 

            DUP  30 < IF  ." extra large " ELSE 

                      ." error " 

            THEN THEN THEN THEN THEN DROP ; 

Once EGGSIZE has been entered, here are some results you'd get: 

    23 EGGSIZE↵medium ok  

    29 EGGSIZE↵extra large ok  

    40 EGGSIZE↵error ok  

We'd like to point out a few things about EGGSIZE: 

The entire definition is a series of "nested" IF...THEN statements. The word "nested" does not refer to the 

fact that we're dealing with eggs, but to the fact that the statements nest inside one another, like a set of 

mixing bowls. 

The five THENs at the bottom close off the five IFs in reverse order, that is: 

 

Also notice that a DROP is necessary at the end of the definition to get rid of the original value. 

Finally, notice that the definition is visually organized to be read easily by human beings. Most Forth 

programmers would rather waste a little space than let things get any more confused than they have to be. 

 

A Closer Look at IF 

How does the comparison operator (=, <, >, or whichever) let IF know whether the condition is true or 

false? By simply leaving TRUE or FALSE on the stack. A TRUE (all bits high) means that the condition 

is true; a FALSE (all bits low) means that the condition is false. 
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In computer jargon, when one piece of program leaves a value as a signal for another piece of program, 

that value is called a "flag." 

Try entering the following phrases at the terminal, letting . show you what's on the stack as a flag. 

    5 4 > .↵-1 ok  

    5 4 < .↵0 ok  

(It's ok to use comparison operators directly at your terminal like this, but remember that an IF...THEN 

statement must be wholly contained within a definition because it involves branching.) 

IF will take a TRUE as a flag that means true and a FALSE as a flag that means false. Now let's take a 

closer look at INVERT, which reverses the flag on the stack. 

    FALSE INVERT .↵-1 ok  

    TRUE INVERT .↵0 ok  

Now we'll let you in on a little secret: IF will take any non-zero value to mean true. 

To prove it, try entering this test: 

    : TEST  IF ." non-" THEN ." zero " ; 

Even though there is no comparison operator in the above definition, you'll still get 

    0 TEST↵zero ok  

    1 TEST↵non-zero ok  

    -400 TEST↵non-zero ok  

So what, you ask? Well, the fact that an arithmetic zero is identical to a flag that means "false" leads to 

some interesting results. 

For one thing, if all you want to test is whether a number is zero, you don't need a comparison operator at 

all. For example, a slightly simpler version of /CHECK, which we saw earlier, could be 

    : /CHECK  DUP IF  /  ELSE  ." invalid " DROP  THEN ; 
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Here's another interesting result. Say you want to test whether a number is an even multiple of ten, such 

as 10, 20, 30, 40 etc. You know that the phrase 

    10 MOD 

divides by ten and returns the remainder only. An even multiple of ten would produce a zero remainder, 

so the phrase 

    10 MOD 0= 

gives the appropriate "true" or "false" flag. 

Still another interesting result is that you can use - (minus) as a comparison operator which tests whether 

two values are "not equal." When you subtract two equal numbers, you get zero (false); when you 

subtract two unequal numbers, you get a non-zero value. However, now we must talk a bit about "well-

formed flags." 

If you think about it, both 0= and INVERT do almost the same thing. However, 0= changes the number 0 

to the number -1 and any non-zero number to 0, while INVERT changes all zero bits in a number to one 

bits and the one bits in that number to zero bits. Only when the number is a "well-formed flag", i.e., either 

0 or -1, the result of 0= and INVERT is the same. All comparison operators return well-formed flags, fit 

for either 0= or INVERT. However, when you use - to compare two numbers, as we did above, the flag 

will not be well-formed when the two numbers differ in value, and only 0= can be used to safely reverse 

the meaning of the comparison. 

A final result is described in the next section. 

 

 
A Little Logic 

It's possible to take several flags from various tests and combine them into a single flag for one IF 

statement. You might combine them as an "either/or" decision, in which you make two comparison tests. 

If either or both of the tests are true, then the computer will execute something. If neither is true, it won't. 

Here's a rather simple-minded example, just to show you what we mean. Say you want to print the name 

"ARTICHOKE" if an input number is either negative or a multiple of ten. 

How do you do this in Forth? Consider the phrase: 

    DUP 0<  SWAP 10 MOD 0=  + 

Here's what happens when the input number is say, 30: 

Operator Contents of stack    Operation 

  30   

DUP 30 30     Duplicates it so we can test it twice. 

0< 30 0     Is it negative? No (zero). 

SWAP 0 30     Swaps the flag with the number. 
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10 MOD 0= 0 -1 Is it evenly divisible by 10? Yes (true). 

+ -1 Add the flags. 

Adds the flags? What happens when you add flags? Here are four possibilities: 

 

Lo and behold, the result flag is true if either or both conditions are true. In this example, the result is -1, 

which means "true." If the input number had been -30, then both condition would have been true and the 

sum would have been minus two. Minus two is, of course, non-zero. So as far as IF is concerned, -2 is as 

true as -1. 

Our simple-minded definition, then would be: 

    : VEGETABLE  DUP 0<  SWAP 10 MOD 0= + 

        IF  ." ARTICHOKE "  THEN ; 

Here is an improved version of a previous example called ?DAY. 

The old ?DAY only caught entries over thirty-one. But negative numbers shouldn't be allowed either. 

How about this: 

    : ?DAY  DUP 1 <  SWAP 31 > + 

        IF ." No way " ELSE ." Looks good " THEN ; 

The above two examples will always work because any "true" flags will always be exactly "-1." In some 

cases, however, a flag may be any non-zero value, not just "-1," in which case it's dangerous to add them 

with +. For example: 

    1 -1 + .↵0 ok  

gives us a mathematically correct answer, but not the answer we want if 1 and -1 are flags. 

For this reason, Forth supplies a word called OR, which will return the correct flag even in case of 1 and -

1. An "or decision" is the computer term for the kind of flag we've been discussing. For example, if either 

the front door or the back door is open (or both), flies will come in. 

Another kind of decision is called an "and" decision. In an "and" decision, both conditions must be true 

for the result to be true. For example, the front door and the back door must both be open for a breeze to 

come through. If there are three or more conditions, they must all be true. 

For the Curious Newcomer 
The use of words like "or" and "and" to structure part of an application is called "logic." A form of notation for 

logical statements was developed in the nineteenth century by George Boole; it is now called Boolean algebra. 

Thus the term "a Boolean flag" (or even just "a Boolean") simply refers to a flag that will be used in a logical 

statement. 
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How can we do this "and decision" in Forth? By using the handy word AND. Here's what AND would do 

with the four possible combinations of flags we saw earlier: 

 

In other words, only the combination "-1 -1 AND" produces a result of "true." Let's say we're looking for 

a cardboard box that's big enough to fit a disk drive h measures: 

 
    height  6" 

    width  19" 

    length 22" 

The height, width, and length requirements all must be satisfied for the box to be big enough. If we have 

the dimensions on the stack, then we can define: 

     : BOXTEST ( length width height -- ) 

        6 >  ROT 22 >  ROT 19 >  AND AND 

        IF ." Big enough " THEN ; 

Notice that we've put a comment inside the definition, to remind us of stack effects. This is particularly 

wise when the stack order is potentially confusing or hard to remember. 

You can test BOXTEST with the following phrase: 

    23 20 7 BOXTEST↵Big enough ok  

As your applications become more sophisticated, you will be able to write statements in Forth that look 

like postfix English and are very easy to read. Just define the individual words within the definition to 

check some condition somewhere, then leave a flag on the stack. 

An example is: 

    : SNAPSHOT  LIGHT? FILM? AND IF  PHOTOGRAPH  THEN ; 

which checks that there is available light and that there is film in the camera before taking the picture. 

Another example, which might be used in a computer-dating application, is: 

    : MATCH 

       HUMOROUS SENSITIVE AND 

       ART.LOVING MUSIC.LOVING OR AND 

       SMOKING 0= AND 

       IF  ." I have someone you should meet " THEN ; 

where words like HUMOROUS and SENSITIVE have been defined to check a record in a disk file that 

contains information on other applicants of the appropriate sex. 
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Two Words with Built-in IF 

?DUP 

The word ?DUP duplicates the top stack value only if it is non-zero. This can eliminate a few surplus 

words. For example, the definition: 

    : /CHECK  DUP IF  /  ELSE DROP  THEN ; 

can be shortened to 

    : /CHECK  ?DUP IF  /  THEN ; 

 

ABORT" 

It may happen that somewhere in a complex application an error might occur (such as a division by zero), 

way down in one of the low-level words. When this happens you don't just want the computer to keep on 

going, and you also don't want it to leave anything on the stack. 

If you think such an error might occur, you can use the word ABORT". ABORT" expects a flag on the 

stack: a "true" flag tells it to "abort," which in turn clears the stacks and returns execution to the terminal, 

waiting for someone to type something. ABORT" also prints the name of the last interpreted word, as 

well as whatever message you want. 

Let's illustrate. We hope you're not sick of /CHECK by now, because here is yet another version: 

    : /CHECK  DUP 0= ABORT" zero denominator " / ; 

In this version, if the denominator is zero, any numbers that happen to be on the stack will be dropped and 

the terminal will show: 

    8 0 /CHECK 

    Error -2 

    zero denominator  ? 

Just as an experiment, try putting /CHECK inside another definition: 

    : ENVELOPE  /CHECK ." The answer is " . ; 
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and try 

    8 4 ENVELOPE↵The answer is 2 ok  
    8 0 ENVELOPE 

    Error -2 

    zero denominator  ? 

The point is that when /CHECK aborts, the rest of ENVELOPE is skipped. 

A useful word to use in conjunction with ABORT" is ?STACK, which checks for stack underflow and 

returns a true flag if it finds it. Thus the phrase: 

    ?STACK ABORT" stack empty " 

aborts if the stack has underflowed. 

Forth uses the identical phrase, in fact. But it waits until all your definitions have stopped executing 

before it performs the ?STACK test, because checking continuously throughout execution would 

needlessly slow down the computer. You're free to insert a ?STACK ABORT" phrase at any critical or 

not-yet-tested portion of your application. 

For Computer Philosophers 
Forth provides certain error checking automatically. But because the Forth operating system is so easy to 

modify, users can readily control the amount of error checking their system will do. This flexibility lets 

users make their own tradeoffs between convenience and execution speed. 

Here's a list of the Forth words we've covered in this chapter: 

IF   xxx 

ELSE yyy 

THEN zzz 

IF: ( f -- ) 
If f is true (non-zero) executes xxx; otherwise executes yyy; continues execution 

with zzz regardless. The phrase ELSE yyy is optional. 

= 
( n1 n2 -- 

f ) 
Returns true if n1 and n2 are equal.  

- 
( n1 n2 -- 

n-diff ) 
Returns true (i.e., the non-zero difference) if n1 and n2 are not equal.  

< 
( n1 n2 -- 

f ) 
Returns true if n1 is less than n2.  

> 
( n1 n2 -- 

f ) 
Returns true if n1 is greater than n2.  

0= ( n -- f ) Returns true if n is zero (i.e., reverse the truth value).  

0< ( n -- f ) Returns true if n is negative.  

0> ( n -- f ) Returns true if n is positive.  

AND 
( n1 n2 -- 

and ) 
Returns the logical AND. 

OR 
( n1 n2 -- 

or ) 
Returns the logical OR. 

?DUP 

( n -- n n ) 

or 

( 0 -- 0 ) 

Duplicates only if n is non-zero.  

ABORT" 

xx" 
( f -- ) 

If the flag is true, types out an error message, followed by the text. Also clears the 

stacks and returns control to the terminal. If false, takes no action.  

?STACK ( -- f ) Returns true if a stack underflow condition has occurred.  
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Review of Terms 

Abort 

as a general computer term, to abruptly cease execution if a condition occurs which the program is 

not designed to handle, in order to avoid producing nonsense or possibly doing damage. 

"And" decision 

two conditions that are combined such that if both of them are true, the result is true. 

Branching 

breaking the normally straightforward flow of execution, depending on conditions in effect at the 

time of execution. Branching allows the computer to respond differently to different conditions. 

Comparison operator 

in general, a command that compares one value with another (for example, determines whether 

one is greater than the other), and sets a flag accordingly, which normally will be checked by a 

conditional operator. In Forth, a comparison operator leaves the flag on the stack. 

Flag 

as a general computer term, a value stored in memory which serves as a signal as to whether some 

known condition is true or false. Once the "flag is set," any number of routines in various parts of 

a program may check (or reset) the flag, as necessary. 

Logic 

in computer terminology, the system of representing conditions in the form of "logical variables," 

which can be either true or false, and combining these variables using such "logical operators" as 

"and," "or," and "not," to form statements which may be true or false. 

Nesting 

placing a branching structure within an outer branching structure. 

"Or" decision 

two conditions that are combined such that if either one of them is true, the result is true. 

 

Problems — Chapter 4 

1. What will the phrase 
2.     0= 0= 

leave on the stack when the argument is 

 

         -1? 

 

          0? 

 

        200? 

[answer] 

3. Explain what an artichoke has to do with any of this. 

4. Define a word called CARD which, given a person's age on the stack, prints out either of these 

two messages (depending on the relevant laws in your area):  
5.     ALCOHOLIC BEVERAGES PERMITTED  or 

6.     UNDER AGE 

[answer] 

http://www.forth.com/starting-forth/sf4/4-1.forth
http://www.forth.com/starting-forth/sf4/4-3.forth
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7. Define a word called SIGN.TEST that will test a number on the stack and print out one of three 

messages:  
8.     POSITIVE   or 

9.     ZERO       or 

10.     NEGATIVE 

[answer] 

11. In Chap. 1, we defined a word called STARS in such a way that it always prints at least one star, 

even if you say  

12.     0 STARS↵* ok  

Using the word STARS, define a new version of STARS that corrects this problem. [answer] 

13. Write the definition for the word WITHIN which expects three arguments:  
14.     ( n lo-limit hi-limit -- ) 

and leaves a "true" flag only if "n" is within the range  

    low-limit <= n < hi-limit 

[answer] 

15. Here's a number-guessing game (which you may enjoy writing more than anyone will enjoy 

playing). First you secretly enter a number onto the stack (you can hide your number after entering 

it by executing the word PAGE, which clears the terminal screen). Then you ask another player to 

enter a guess followed by the word GUESS, as in  
16.     100 GUESS 

The computer will either respond "TOO HIGH," "TOO LOW," or "CORRECT!" Write the 

definition of GUESS, making sure that the answer-number will stay on the stack through repeated 

guessing until the correct answer is guessed, after which the stack should be clear. [answer] 

17. Using nested tests and IF...ELSE...THEN statements, write a definition called SPELLER which 

will spell out a number on the stack, from -4 to 4. If the number is outside this range, it will print 

the message "OUT OF RANGE." For example:  

18.     2 SPELLER↵two ok  

19.     -4 SPELLER↵negative four ok  

20.     7 SPELLER↵OUT OF RANGE ok  

Make it as short as possible. (Hint: The Forth word ABS gives the absolute value of a number on 

the stack.) [answer] 

21. Using your definition of WITHIN from Prob. 6, write another number-guessing game, called 

TRAP, in which you first enter a secret value, then a second player tries to home in on it by 

trapping it between two numbers, as in this dialogue:  

22.     0 1000 TRAP↵BETWEEN ok  

23.     330 660 TRAP↵BETWEEN ok  

24.     440 550 TRAP↵NOT BETWEEN ok  

25.     330 440 TRAP↵BETWEEN ok  

and so on, until the player guesses the answer:  

    391 391 TRAP↵YOU GOT IT! ok  

http://www.forth.com/starting-forth/sf4/4-4.forth
http://www.forth.com/starting-forth/sf1/sf1.html
http://www.forth.com/starting-forth/sf4/4-5.forth
http://www.forth.com/starting-forth/sf4/4-6.forth
http://www.forth.com/starting-forth/sf4/4-7.forth
http://www.forth.com/starting-forth/sf4/4-8.forth
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Hint: you may have to modify the arguments to WITHIN so that TRAP does not say 

"BETWEEN" when only one of the arguments is equal to the hidden value. [answer] 

«previous next»  

http://www.forth.com/starting-forth/sf4/4-9.forth
http://www.forth.com/starting-forth/sf3/sf3.html
http://www.forth.com/starting-forth/sf3/sf3.html
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5. The Philosophy of Fixed Point 

In this chapter we'll introduce a new batch of arithmetic operators. Along the way we'll tackle the problem 

of handling decimal points using only whole-number arithmetic. 

Quickie Operators 

Let's start with the real easy stuff. You should have no trouble figuring out what the words in the 

following table do.  

1+ 
( n -- 

n+1 ) 
Adds one.  

1- 
( n -- n-

1 ) 
Subtracts one.  

2+ 
( n -- 

n+2 ) 
Adds two.  

2- 
( n -- n-

2 ) 
Subtracts two.  

2* 
( n -- 

n*2 ) 

Multiplies by two (arithmetic 

left shift).  

2/ 
( n -- 

n/2 ) 

Divides by two (arithmetic 

right shift).  

 

The reason they have been defined as words in your Forth system is that they are used very frequently in 

most applications and even in the Forth system itself. 

The only reason to use a word such as 1+, instead of one and +, is tradition. In modern Forths 1+ saves 

neither space nor compile or execution time. 

Miscellaneous Math Operators 

Here's a table of four miscellaneous math operators. Like the quickie operators, these functions should be 

obvious from their names. 

ABS ( n -- |n| ) Returns the absolute value.  

NEGATE ( n -- -n ) Changes the sign.  

MIN ( n1 n2 -- n-min ) Returns the minimum. 

MAX ( n1 n2 -- n-max ) Returns the maximum. 
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Here are two simple word problems, using ABS and MIN: 

ABS 

Write a definition which computes the difference between two numbers, regardless of the order in which 

the numbers are entered. 

: DIFFERENCE   - ABS ; 

This gives the same result whether we enter 

52 37 DIFFERENCE .↵>15 ok  

37 52 DIFFERENCE .↵15 ok  

MIN 

Write a definition which computes the commission that furniture salespeople will receive if they've been 

promised $50 or 1/10 of the sales price, whichever is less, on each sale they make. 

: COMMISSION   10 /  50 MIN ; 

Three different values would produce these results: 

600 COMMISSION .↵50 ok  

450 COMMISSION .↵45 ok  

 50 COMMISSION .↵5 ok  

 
The Return Stack 

We mentioned before that there were still some stack manipulation operators we hadn't discussed yet. 

Now it's time. 

Up till now we've been talking about "the stack" as if there were only one. But in fact there are two:  the 

"parameter stack" and the "return stack." The parameter stack is used more often by Forth programmers, 

so it's simply called "the stack" unless there is cause for doubt. 

As you've seen, the parameter stack holds parameters (or "arguments") that are being passed from word to 

word. The return stack, however, holds any number of "pointers" which the Forth system uses to make its 

merry way through the maze of words that are executing other words. We'll elaborate later on. 

You, the user, can employ the return stack as as kind of "extra hand" to hold values temporarily while you 

perform operations on the parameter stack. 
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The return stack is a last-in first-out structure, just like the parameter stack, so it can hold many values. 

But here's the catch: whatever you put on the return stack you must remove again before you get to the 

end of the definition (the semicolon), because at that point the Forth system will expect to find a pointer 

there. You cannot use the return stack to pass parameters from one word to another. 

 

The following table lists the words associated with the return stack. Remember, the stack notation refers 

to the parameter stack. 

>R ( n -- ) Takes a value off the parameter stack and pushes it onto the return stack.  

R> ( -- n ) Takes a value off the return stack and pushes it onto the parameter stack.  

I ( -- n ) Copies the top of the return stack without affecting it. 

R@ ( -- n ) Copies the top of the return stack without affecting it.  

J ( -- n ) Copies the third item of the return stack without affecting it. 

 

The words >R and R> transfer a value to and from the return stack, respectively. Say we want the 

following stack effect: 

( 2 3 1 -- 3 2 1 ) 

this is the phrase that will do it: 

>R SWAP R> 

Each >R and its corresponding R> must be used together in the same definition. 
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The other three words — I or R@ and J — only copy values from the return stack without removing 

them. Thus the phrase: 

>R SWAP R@ 

would produce the same result as far as it goes, but unless you clean up your trash before the next 

semicolon you will crash the system. 

To see how >R, R>, R@, and I might be used, imagine you are so unlucky as to need to solve the 

equation: 

ax
2
 + bx + c 

with all four values on the stack in the following order: 

( a b c x -- ) 

(remember to factor out first). 

 Operator parameter stack        return stack 

  a b c x   

>R a b c x 

SWAP ROT c b a x 

R@ c b a x x 

* c b ax x 

+ c ax+b x 

R> *  c x(ax+b)   

+ x(ax+b)+c   

Go ahead and try it. Load the following definition: 

: QUADRATIC  ( a b c x -- n ) 

>R SWAP ROT R@ *  + R> *  + ; 

Now test it: 

2 7 9 3 QUADRATIC↵48 ok  
 

An Introduction to Floating-Point Arithmetic 

First, what does floating point mean? Take a pocket calculator, for example. Here's what the display looks 

like after each step: 

You enter: Display reads: 

1 . 5 0 x 1.5 

2 . 2 3 2.23 

= 3.345 

The decimal point "floats" across the display as necessary. This is called a "floating point display." 

"Floating point representation" is a way to store numbers in computer memory using a form of scientific 

notation. In scientific notation, twelve million is written: 

12 x 10
6
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since ten to the sixth power equals one million. In a computer twelve million is stored as two numbers: 12 

and 6, where it is understood that 6 is the power of ten to be multiplied by 12, while 3.345 could be stored 

as 3345 and -3. 

The idea of floating-point representation is that the computer can represent an enormous range of 

numbers, from atomic to astronomic, with two relatively small numbers. 

What is fixed-point representation? It is simply the method of storing numbers in memory without storing 

the positions of each number's decimal point. For example, in working with dollars and cents, all values 

can be stored in cents. The program, rather than each individual number, can remember the location of 

the decimal point.  

For example, let's compare fixed-point and floating-point representations of dollars-and-cents values. 

Real world value: Fixed-point representation: Floating-point representation: 

1.23 123 123(-2) 

10.98 1098 1098(-2) 

100.00 10000 1(2) 

58.60 5860 586(-1) 

As you can see , with fixed-point all the values must conform to the same "scale." The decimal points 

must be properly "aligned" (in this case two places in from the right) even though they are not actually 

represented. With fixed-point, the computer treats all the numbers as though they were integers. If the 

program needs to print out an answer, however, it simply inserts the decimal point two places in from the 

right before it sends the number to the terminal or to the printer. 

 

Why Fixed-Point is Useful 

A Forth programmer is most interested in maximizing the efficiency of the machine. That means he or 

she wants to make the program run as fast as possible and require as little computer memory as possible. 

Unfortunately, not all processors or controllers offer hardware floating-point support. Therefore, in some 

environments, programs that use floating-point features are redirected through an emulation library. 

Emulation code can be up to three times slower than the equivalent fixed-point calculation. Of course, 

this difference is only really noticeable in programs which have to do a lot of calculations before sending 

results to a terminal or taking some action. The catch is that code from an emulation library is also many 

times larger than its fixed-point counterpart, which is quite uneconomical for small embedded controllers 

and such. 

You should note carefully that when a processor supports hardware floating-point, it is almost always 

much faster and more compact than the fixed-point equivalent. The speed difference can be between 3 

and 15 times. 

Everything you can do with floating-point, you can do with fixed-point too, as we'll show in the 

following. But there is one thing you should minimize as much as possible, and that is switching back and 

forth between fixed and floating-point formats. Format conversion and additional scaling steps cost as 

much or even more time than doing the calculations themselves. 

Forth helps programmers use fixed-point by supplying them with a unique set of high-level commands 

called "scaling operators." We'll introduce the first of these commands in the next section. (The final 

example in Chap. 12 illustrates the use of scaling techniques.) 

Star-slash the Scalar 

Here's a math operator that is as useful as it is unusual: */. 

http://www.forth.com/starting-forth/sf12/sf12.html
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*/ ( n1 n2 n3 -- n-result ) Multiplies, then divides (n1*n2/n3). Uses a double-length intermediate result.  

 

As its name implies, */ performs multiplication, then division. For example, let's say that the stack 

contains these three numbers: 

( 225 32 100 -- ) 

*/ will first multiply 225 by 32, then divide the result by 100. 

This operator is particularly useful as an integer-arithmetic solution to problems such as percentage 

calculations. 

For example, you could define the word % like this: 

: %  100 */ ; 

so that by entering the number 225 and then the phrase: 

32 % 

The method of first multiplying two integers, then dividing by 100 is identical to the approach most 

people take in solving such problems on paper: 

  225 

 0.32 x 

 4.50 

67.5 

72.00 

*/ is not * and a / thrown together, though. It uses a "double-length intermediate result." What does that 

mean, you ask? 
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Say you want to compute 34% of 912,345,678. Remember that single-precision operators, like * and /, 

only work with arguments and results within the range of a single-length number. If you were to enter the 

phrase: 

912345678 34 * 100 / 

you'd get an incorrect result, because the "intermediate result" (in this case, the result of the 

multiplication), exceeds 2147483647, as shown in the left column in this pictorial simulation. 

But */ uses a double-length intermediate result, so that its range will be large enough to hold the result of 

any two single-length numbers multiplied together. The phrase: 

912345678 34 100 */ 

returns the correct answer because the end result falls within the range of single-length numbers. 

The previous example brings up another question: how to round off. 

Let's assume that this is the problem: 

If 32% of the students eating at the school cafeteria usually buy bananas, how many bananas should be on 

hand for a crowd of 225? Naturally, we are only interested in whole bananas, so we'd like to round off 

any decimal remainder. 

As our definition now stands, any value to the right of the decimal is simply dropped. In other words, the 

result is "truncated." 

32% of:     Result: 

225           = 72.00     72 — exactly correct 

226           = 72.32     72 — correct, rounded down (truncated) 

227           = 72.64     72 — truncated, not rounded 

There is a way, however, with any decimal value of .5 or higher, to round upwards to the next whole 

banana. We could define the word R%, for "rounded-percent," like this: 

: R%  10 */  5 +  10 / ; 

so that the phrase: 

227 32 R% . 

will give you 73, which is correctly rounded up. 

Notice that we first divide by 10 rather than by 100. This gives us an extra decimal place to work with, to 

which we can add five: 

Operation  Stack Contents 

   227  32  10 

*/  726 

5 +  731 

10 /  73 

The final division by ten sets the value to its rightful decimal position. Try it and see.  
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A disadvantage to this method of rounding is that you lose one decimal place of range in the final result; 

that is, it can only go as high as 214,748,364 rather than 2,147,483,647. But if that's a problem, you can 

always use double-length numbers, which we'll introduce later, and still be able to round. 

Some Perspective on Scaling 

Let's back up for a minute. Take the simple problem of computing two-thirds of 171. Basically, there are 

two ways to go about it. 

1. We could compute the value of the fraction 2/3 by dividing 2 by 3 to obtain the repeating decimal 

.6666666, etc. Then we could multiply this value by 171. The result would be 113.9999999, etc., 

which is not quite right but which could be rounded up to 114. 

2. We could multiply 171 by 2 to get 342. Then we could divide this by 3 to get 114. 

Notice that the second way is simpler and more accurate. 

 

Most computer languages support the first way. "You can't have a fraction like two-thirds hanging around 

inside a computer," it is believed, "you must express it as .6666666, etc." 

Forth supports the second way. */ lets you have a fraction like two-thirds, as in: 

171 2 3 */ 

Now that we have a little perspective, let's take a slightly more complicated example: 

We want to distribute $150 in proportion to two values:  

 7,105      ? 

 5,145      ?  

12,250     150 

Again, we could solve the problem this way: 

(7,105 / 12,250) x 150 

and 

(5,145 / 12,250) x 150 

but for greater accuracy we should say: 

(7,105 x 150) / 12,250 

and 

(5,145 x 150) / 12,250 

which in Forth is written: 



71 
 

7105 150 12250 */ .↵87 ok  

and 

5145 150 12250 */ .↵63 ok  

It can be said that the values 87 and 63 are "scaled" to 7105 and 5145. Calculating percentages, as we did 

earlier, is also a form of scaling. For this reason, */ is called a "scaling operator." 

Another scaling operator in Forth is */MOD: 

*/MOD 

( n1 n2 n3 -- 

n-rem n-

result ) 

Multiplies, then divides (n1*n2/n3). Returns the remainder and the quotient. Uses a 

double-length intermediate result.  

 

We'll let you dream up a good example for */MOD yourself. 

 
Using Rational Approximations 

So far we've only used scaling operations to work on rational numbers. They can also be used on 

rational approximations of irrational constants, such as p or the +2. For example, the real value of π is: 

 3.14159265358979, etc. 

but to stay within the bounds of single-length arithmetic, we could write the phrase: 

 31416 10000 */ 

and get a pretty good approximation. 

Now we can write a definition to compute the area of a circle, given its radius. We'll translate the 

formula: 

pr
2
 

into Forth. The value of the radius will be on the stack, so we DUP it and multiply it by itself, then star-

slash the result: 

: PI  DUP * 31416 10000 */ ; 

Try it with a circle whose radius is 10 inches: 

10 PI .↵314 ok  

But for even more accuracy, we might wonder if there is a pair of integers beside 3146 and 10000 that is a 

closer approximation to p. Surprisingly, there is. The fraction: 

355 113 */ 
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is accurate to more than six places beyond the decimal, as opposed to less than four places with 31416. 

Our new and improved definition, then, is: 

: PI  DUP * 355 113 */ ; 

It turns out that you can approximate nearly any constant by many different pairs of integers, all numbers 

less than 32768, with an error less than 10
-8

. 

Handy Table of Rational Approximations to Various Constants 

Number Approximation Error 

π = 3.141 ... 355 / 113 8.5 x 10
-8

 

π = 3.141 ... 1068966896 / 340262731 3.0 x 10
-18

 

√2 = 1.414 ... 19601 / 13860 1.5 x 10
-9

 

√3 = 1.732 ... 18817 / 10864 1.1 x 10
-9

 

e = 2.718 ... 28667 / 10546 5.5 x 10
-9

 

√10 = 3.162 ... 22936 / 7253 5.7 x 10
-9

 
12

√2 = 1.059 ... 26797 / 25293 1.0 x 10
-9

 

log(2) / 1.6384 = 0.183 ... 2040 / 11103 1.1 x 10
-8

 

ln(2) / 16.384 = 0.042 ... 485 / 11464 1.0 x 10
-7

 

Here's a list of the Forth words we've covered in this chapter: 

1+ ( n -- n+1 ) Adds one.  

1- ( n -- n-1 ) Subtracts one.  

2+ ( n -- n+2 ) Adds two.  

2- ( n -- n-2 ) Subtracts two.  

2* ( n -- n*2 ) Multiplies by two (arithmetic left shift).  

2/ ( n -- n/2 ) Divides by two (arithmetic right shift).  

ABS ( n -- |n| ) Returns the absolute value.  

NEGATE ( n -- -n ) Changes the sign.  

MIN 
( n1 n2 -- n-

min ) 
Returns the minimum. 

MAX 
( n1 n2 -- n-

max ) 
Returns the maximum.  

>R ( n -- ) Takes a value off the parameter stack and pushes it onto the return stack.  

R> ( -- n ) Takes a value off the return stack and pushes it onto the parameter stack.  

I ( -- n ) Copies the top of the return stack without affecting it. 

R@ ( -- n ) Copies the top of the return stack without affecting it.  

J ( -- n ) Copies the third item of the return stack without affecting it. 

*/ 
( n1 n2 n3 -- 

n-result ) 
Multiplies, then divides (n1*n2/n3). Uses a double-length intermediate result.  

*/MOD 

( n1 n2 n3 -- 

n-rem n-

result ) 

Multiplies, then divides (n1*n2/n3). Returns the remainder and the quotient. Uses 

a double-length intermediate result.  

Review of Terms 

Double-length intermediate result 

a double-length value which is created temporarily by a two-part operator, such as */, so that the 

"intermediate result" (the result of the first operation) is allowed to exceed the range of a single-

length number, even when the initial arguments and the final result are not. 

Fixed-point arithmetic 
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arithmetic which deals with numbers which do not themselves indicate the location of decimal 

points. Instead, for any group of numbers, the program assumes the location of the decimal point 

or keeps the decimal location for all such numbers as a separate number. 

Floating-point arithmetic 

arithmetic which deals with numbers which themselves indicate the location of their decimal 

points. The program must be able to interpret the true value of each individual number before any 

arithmetic can be performed. 

Parameter stack 

in Forth, the region of memory which serves as common ground between various operations to 

pass arguments (numbers, flags, or whatever) from one operation to another. 

Return stack 

in Forth, a region of memory distinct from the parameter stack which the Forth system uses to 

hold "return addresses" (to be discussed in Chap. 9), among other things. The user may keep 

values on the return stack temporarily, under certain conditions. 

Scaling 

the process of multiplying (or dividing) a number by a ratio. Also refers to the process of 

multiplying (or dividing) a number by a power of ten so that all values in a set of data may be 

represented as integers with the decimal points assumed to be in the same place for all values. 

 

Problems — Chapter 5 

1. Translate the following algebraic expression into a Forth definition:  
2. -a b 

3.   c 

given ( a b c -- ) [answer] 

4. Given these four numbers on the stack:  
5. ( 6 70 123 45 -- ) 

write an expression that prints the largest value. [answer] 

6. In "calculator style," convert the following temperatures, using these formulas: 
o
C = (

o
F - 32) / 1.8 

o
F = (

o
C x 1.8) + 32 

o
K = 

o
C + 273 

 

(For now, express all arguments and results in whole degrees.) 

    0
o
 F in Centigrade 

 212
o
 F in Centigrade 

 -32
o
 F in Centigrade 

  16
o
 C in Fahrenheit 

 233
o
 K in Centigrade [answer] 

7. Now define words to perform the conversions in Prob. 3. Use the following names:  

F>C  F>K  C>F  C>K  K>F  K>C  

Test them with the above values. [answer] 

 

http://www.forth.com/starting-forth/sf9/sf9.html
http://www.forth.com/starting-forth/sf5/5-1.forth
http://www.forth.com/starting-forth/sf5/5-2.forth
http://www.forth.com/starting-forth/sf5/5-3.forth
http://www.forth.com/starting-forth/sf5/5-4.forth
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6. Throw It For a Loop 

In Chap. 4 we learned to program the computer to make "decisions" by branching to different parts of a 

definition depending on the outcome of certain tests. Conditional branching is one of the things that make 

computers as useful as they are. 

In this chapter, we'll see how to write definitions in which execution can conditionally branch back to an 

earlier part of the same definition, so that some segment will repeat again and again. This type of control 

construct is called a "loop." The ability to perform loops is probably the most significant thing that makes 

computers as powerful as they are. If we can program the computer to make out one payroll check, we 

can program it to make out a thousand of them. 

For now we'll write loops that do simple things like printing numbers at your terminal. In later chapters, 

we'll learn to do much more with them. 

 

Definite Loops — DO...LOOP 

One type of loop structure is called a "definite loop." You, the programmer, specify the number of times 

the loop will loop. In Forth, you do this by specifying a beginning number and an ending number (in 

reverse order) before the word DO. Then you put the words which you want to have repeated between the 

words DO and LOOP. For example 

   : TEST   10 0 DO  CR ." Hello "  LOOP ; 

will print a carriage return and "Hello" ten times, because zero from ten is ten. 

   TEST 

   Hello 

   Hello 

   Hello 

   Hello 

   Hello 

   Hello 

   Hello 

   Hello 

   Hello 

   Hello ok 

Like an IF...THEN statement, which also involves branching, a DO...LOOP statement must be contained 

within a (single) definition. 

The ten is called the "limit" and the zero is called the "index." 

   FORMULA: 

           limit index DO ... LOOP 

Here is what happens inside a DO...LOOP: 

First DO  puts the index and the limit on the loop control stack. 

 

http://www.forth.com/starting-forth/sf4/sf4.html
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Then execution proceeds to the words inside the loop, up till the word LOOP. 

 

If the index is less than the limit, LOOP reroutes execution back to DO, and adds one to the index. 

 

Eventually the index reaches ten, and LOOP lets execution move on to the next word in the definition. 

 

Remember that the Forth word I copies the top of the loop control stack onto the parameter stack. You 

can use I to get hold of the current value of the index each time around. Consider the definition 

   : DECADE  10 0 DO  I .  LOOP ; 

which executes like this: 

   DECADE ↵0 1 2 3 4 5 6 7 8 9 ok 

Of course, you could pick any range of numbers (within the range of -2147483648 to +2147483647): 

   : SAMPLE  -243 -250 DO  I .  LOOP ; 

   SAMPLE ↵-250 -249 -248 -247 -246 -245 -244 ok 

Notice that even negative numbers increase by one each time. The limit is always higher than the index. 

You can leave a number on the stack to serve as an argument to something inside a DO loop. For 

instance, 

   : MULTIPLICATIONS  CR 11 1 DO  DUP I * .  LOOP  DROP ; 

will produce the following results: 

   7 MULTIPLICATIONS↵ 
   7 14 21 28 35 42 49 56 63 70 ok  

Here we're simply multiplying the current value of the index by seven each time around. Notice that we 

have to DUP the seven inside the loop so that a copy will be available each time and that we have to 

DROP it after we come out of the loop. 
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A compound interest problem gives us the opportunity to demonstrate some trickier stack manipulations 

inside a DO loop. 

Given a starting balance, say $1000, and an interest rate, say 6%, let's write a definition to compute and 

print a table like this: 

   1000 6 COMPOUND 

   YEAR 1  BALANCE 1060 

   YEAR 2  BALANCE 1124 

   YEAR 3  BALANCE 1191 

                                etc. 

for twenty years. 

First we'll load R%, our previously-defined word from Chap. 5, then we'll define 

   : COMPOUND  ( amount interest -- ) 

           CR SWAP 21 1 DO  ." YEAR " I . 3 SPACES 

                            2DUP R% +  DUP ." BALANCE " . CR 

                      LOOP  2DROP ; 

 

Each time through the loop, we do a 2DUP so that we always maintain a running balance and an 

unchanged interest rate for the next go-round. When we're finally done, we 2DROP them. 

 

Getting IFfy 

The index can also serve as a condition for an IF statement. In this way you can make something special 

happen on certain passes through the loop but not on others. Here's a simple example: 

   : RECTANGLE  256 0 DO   I 16 MOD 0= IF  CR  THEN 

                           ." *" 

                    LOOP ; 

RECTANGLE will print 256 stars, and at every sixteenth star it will also perform a carriage return at your 

terminal. The result should look like this: 

        **************** 

        **************** 

        **************** 

        **************** 

        **************** 

        **************** 

        **************** 

        **************** 

        **************** 

        **************** 

        **************** 

        **************** 

        **************** 

http://www.forth.com/starting-forth/sf5/sf5.html
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        **************** 

        **************** 

        **************** 

And here's an example from the world of nursery rhymes. We'll let you figure this one out. 

   : POEM  CR 11 1 DO  I . ." Little " 

                      I 3 MOD 0= IF ." indians " CR THEN 

                 LOOP 

           ." indian boys. " ; 

 

Nested Loops 

In the last section we defined a word called MULTIPLICATIONS, which contains a DO...LOOP. If we 

wanted to, we could put MULTIPLICATIONS inside another DO...LOOP, like this: 

   : TABLE  CR 11 1 DO  I MULTIPLICATIONS  LOOP ; 

Now we'll get a multiplication table that looks like this: 

   1 2 3 4 5 6 7 8 9 10 

   2 4 6 8 10 12 14 16 18 20 

   3 6 9 12 15 18 21 24 27 30 

                                   etc. 

   10 20 30 40 50 60 70 80 90 100 

because the I in the outer loop supplies the argument for MULTIPLICATIONS. 

You can also nest DO loops inside one another all in the same definition: 

   : TABLE  CR 11 1 DO 

                  11 1 DO  I J *  5 U.R  LOOP 

               CR LOOP ; 

Notice this phrase in the inner loop: 

   I J * 

In Chap. 5 we mentioned that the word J copies the third item on the loop control stack onto the 

parameter stack. It so happens that in this case the third item on the loop control stack is the index of the 

outer loop. 

Thus the phrase "I J *" multiplies the two indexes to create the value in the table. 

Now what about this phrase? 

   5 U.R 

This is nothing more than a fancy . that is used to print numbers in table form so that they line up 

vertically. The five represents the number of spaces we've decided each column in the table should be. 

The output of the new table will look like this: 

   1    2    3    4    5    6    7    8    9   10 

   2    4    6    8   10   12   14   16   18   20 

   3    6    9   12   15   18   21   24   27   30   etc. 

Each number takes five spaces, no matter how many digits it contains. (U.R stands for "unsigned number-

print, right justified." The term "unsigned," you may recall, means you cannot use it for negative 

numbers.) 

http://www.forth.com/starting-forth/sf5/sf5.html
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+LOOP 

If you want the index to go up by some number other than one each time around, you can use the word 

+LOOP instead of LOOP. +LOOP expects on the stack the number by which you want the index to 

change. For example, in the definition 

   : PENTAJUMPS  50 0 DO  I .  5 +LOOP ; 

the index will go up by five each time, with this result: 

   PENTAJUMPS↵0 5 10 15 20 25 30 35 40 45 ok 

while in 

   : FALLING  -10 0 DO  I .  -1 +LOOP ; 

the index will go down by one each time, with this result: 

   FALLING↵0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 ok 

 

The argument for +LOOP, which is called the "increment," can come from anywhere, but it must be put 

on the stack each time around. Consider this experimental example: 

   : INC-COUNT  DO  I . DUP +LOOP  DROP ; 

There is no increment inside the definition; instead, it will have to be on the stack when INC-COUNT is 

executed, along with the limit and index. Watch this: 

Step up by one: 

   1 5 0 INC-COUNT↵0 1 2 3 4 ok 

Step up by two: 

   2 5 0 INC-COUNT↵0 2 4 ok 

Step down by three: 

   -3 -10 10 INC-COUNT↵10 7 4 1 -2 -5 -8 ok 

Our next example demonstrates an increment that changes each time through the loop. 

   : DOUBLING   32767 1 DO  I . I +LOOP ; 

Here the index itself is used as the increment (I +LOOP), so that starting with one, the index doubles each 

time, like this: 

   DOUBLING↵ 
   1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 ok 
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Notice that in this example we don't ever want the argument for +LOOP to be zero, because if it were 

we'd never come out of the loop. We would have created what is known as an "infinite loop." 

 

DOing it — Forth Style 

There are a few things to remember before you go off and write some DO loops of your own. 

First, keep this simple guide in mind: 

Reasons for termination 

 

Execution makes its exit from a loop when, in going up, the index has reached or passed the limit. 

Or, when in going down, the index has passed the limit — not when it has merely reached it. 

But a DO loop always executes at least once (this example will loop millions of times on a true ANS 

Forth system, so be prepared): 

   : TEST  100 10 DO  I . -1 +LOOP ; 

   TEST↵10 9 8 7 ... 

Second, remember that the words DO and LOOP are branching commands and that therefore they can 

only be executed inside a definition. This means that you cannot design/test your loop definitions in 

"calculator style" unless you simulate the loop yourself. 

Let's see how a fledgling Forth programmer might go about design/testing the definition of COMPOUND 

(from the first section of this chapter). Before adding the ." messages, the programmer might begin by 

jotting down this version on a piece of paper: 

   : COMPOUND  ( amt int -- ) 

           SWAP 21 1 DO  I . 2DUP R% + DUP . CR LOOP  2DROP ; 

The programmer might test this version at the terminal, using . or .S to check the result of each step. The 

"conversation" might look like this: 
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A Handy Hint: 

How to Clear the Stack 

Sometimes a beginner will unwittingly write a loop which leaves a whole lot of numbers on the stack. For 

example 

   : FIVES  100 0 DO  I 5 . LOOP ; 

instead of 

   : FIVES  100 0 DO  I 5 * . LOOP ; 

If you see this happen to anyone (surely it will never happen to you!) and if you see the beginner typing in 

an endless succession of dots to clear the stack, recommend typing in 

   XX 

XX is not a Forth word, so the text interpreter will execute the word ABORT", which among other things 

clears all stacks. The beginner will be endlessly grateful. 

 

Indefinite Loops 

While DO loops are called definite loops, Forth also supports "indefinite" loops. This type of loop will 

repeat indefinitely or until some event occurs. A standard form of indefinite loop is 

   BEGIN ... UNTIL 

The BEGIN...UNTIL loop repeats until a condition is "true." 

The usage is 

   BEGIN xxx f UNTIL 

 

where "xxx" stands for the words that you want to be repeated, and "f" stands for a flag. As long as the 

flag is zero (false), the loop will continue to loop, but when the flag becomes non-zero (true), the loop 

will end. 
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An example of a definition that uses a BEGIN...UNTIL statement is one we mentioned earlier, in our 

washing machine example: 

   : TILL-FULL  BEGIN ?FULL UNTIL ; 

which we used in the higher-level definition 

   : FILL  FAUCETS OPEN  TILL-FULL  FAUCETS CLOSE ; 

?FULL will be defined to electronically check a switch in the washtub that indicates when the water 

reaches the correct level. It will return zero if the switch is not activated and a one if it is. TILL-FULL 

does nothing but repeatedly make this test over and over (millions of times per second) until the switch is 

finally activated, at which time execution will come out of the loop. Then the ; in TILL-FULL will return 

the flow of execution to the remaining words in FILL, and the water faucets will be turned off. 

Sometimes a programmer will deliberately want to create an infinite loop. In Forth, the best way is with 

the form 

   : BEGIN xxx 0 UNTIL 

The zero supplies a "false" flag to the word UNTIL, so the loop will repeat eternally. 

Beginners usually want to avoid infinite loops, because executing one means that they lose control of the 

computer (in the sense that only the words inside the loop are being executed). But infinite loops do have 

their uses. For instance, the text interpreter is part of an infinite loop called QUIT, which waits for input, 

interprets it, executes it, prints "ok," then waits for input once again. In most microprocessor-controlled 

machines, the highest-level definition contains an infinite loop that defines the machine's behavior. 

Another form of indefinite loop is used in this format: 

   BEGIN xx f WHILE yyy REPEAT 

Here the test occurs halfway through the loop rather than at the end. As long as the test is true, the flow of 

execution continues with the rest of the loop, then returns to the beginning again. If the test is false, the 

loop ends. 

 

Notice that the effect of the test is opposite that in the BEGIN...UNTIL construction. Here the loop 

repeats while something is true (rather than until it's true). 

The indefinite loop structures lend themselves best to cases in which you're waiting for some external 

event to happen, such as the closing of a switch or thermostat, or the setting of a flag by another part of an 

application that is running simultaneously. So for now, instead of giving examples, we just want you to 

remember that the indefinite loop structures exist. 
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The Indefinitely Definite Loop 

There is a way to write a definite loop so that it stops short of the prescribed limit if a truth condition 

changes state, by using the word LEAVE. LEAVE causes the loop to end immediately. 

Watch how we rewrite our earlier definition of COMPOUND. Instead of just letting the loop run twenty 

times, let's get it to quit after twenty times or as soon as our money has doubled, whichever occurs first. 

We'll simply add this phrase: 

   2000 > IF  LEAVE  THEN 

like this: 

   : DOUBLED 

     6 1000 21 1 DO  CR ." YEAR " I 2 U.R 

           2DUP R% +  DUP ."    BALANCE " . 

           DUP 2000 > IF  CR CR ." more than doubled in " 

                             I . ." years " LEAVE 

                    THEN 

      LOOP 2DROP ; 

The result will look like this: 

  DOUBLED 

        YEAR  1   BALANCE 1060 

        YEAR  2   BALANCE 1124 

        YEAR  3   BALANCE 1191 

        YEAR  4   BALANCE 1262 

        YEAR  5   BALANCE 1338 

        YEAR  6   BALANCE 1418 

        YEAR  7   BALANCE 1503 

        YEAR  8   BALANCE 1593 

        YEAR  9   BALANCE 1609 

        YEAR 10   BALANCE 1790 

        YEAR 11   BALANCE 1897 

        YEAR 12   BALANCE 2011 

 

        more than doubled in 12 years ok 

One of the problems at the end of this chapter asks you to rework DOUBLED so that it expects the 

parameters of interest and starting balance, and computes by itself the double balance that LEAVE will 

try to reach. 

 
Two Handy Hints: PAGE and QUIT 

To give a neater appearance to your loop outputs (such as tables and geometric shapes), you might want 

to clear the screen first by using the word PAGE. You can execute PAGE interactively like this: 

   PAGE RECTANGLE 

which will clear the screen before printing the rectangle that we defined earlier in this chapter. Or you 

could put PAGE at the beginning of the definition. like this: 

   : RECTANGLE  PAGE 256 0 DO  I 16 MOD 

        0= IF  CR  THEN  ." *"  LOOP ; 

If you don't want the "ok" to appear upon completion of execution, use the word QUIT. Again, you can 

use QUIT interactively: 



83 
 

   RECTANGLE QUIT 

or you can make QUIT the last word in the definition (just before the semicolon). 

Here's a list of the Forth words we've covered in this chapter: 

DO ... LOOP 

DO: ( limit 

index -- ) 

LOOP: ( -- ) 

Sets up a finite loop, given the index range. 

DO ... +LOOP 

DO: ( limit 

index -- ) 

+LOOP: ( -- ) 

Like DO ... LOOP except adds the value of n (instead of always one) to 

the index.  

LEAVE ( -- ) Terminate the loop immediately. 

BEGIN ... 

UNTIL 
UNTIL: ( f -- ) Sets up an indefinite loop which ends when f is true. 

BEGIN xxx 

 WHILE yyy 

 REPEAT 

WHILE: ( f -- ) 
Sets up an indefinite loop which always executes xxx and also yyy if f 

is true. Ends when f is false. 

U.R ( u width -- ) 
Prints the unsigned single-length number, right-justified within the 

field width.  

PAGE ( -- ) 
Clears the terminal screen and resets the terminal's cursor to the upper 

left-hand corner. 

QUIT ( -- ) 
Terminates execution for the current task and returns control to the 

terminal. 

 

Review of Terms 

definite loop 

a loop structure in which the words contained within the loop repeat a definite number of times. In 

Forth, this number depends on the starting and ending counts (index and limit) which are placed 

on the stack prior to the execution of the word DO. 

infinite loop 

a loop structure in which the words contained within the loop continue to repeat without any 

chance of an external event stopping them, except for closing the Forth window or shutting down 

or resetting the computer. 

indefinite loop 

a loop structure in which the words contained within the loop continue to repeat until some truth 

condition changes state (true-to-false or false-to-true). In Forth, the indefinite loops begin with the 

word BEGIN. 

 

Problems — Chapter 6 

In Problems 1 through 6, you will create several words which will print out patterns of stars (asterisks). 

These will involve the use of DO loops and BEGIN...UNTIL loops. 

1. First create a word named STARS which will print out n stars on the same line, given n on the 

stack: 

2.    10 STARS↵********** ok  
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[answer] 

3. Next define BOX which prints out a rectangle of stars, given the width and height (number of 

lines), using the stack order ( width height -- ). 
4.    10 3 BOX 

5.         ********** 

6.         ********** 

7.         ********** ok 

[answer] 

8. Now create a word named \STARS which will print a skewed array of stars (a rhomboid), given 

the height on the stack. Use a DO loop and, for simplicity, make the width a constant ten stars. 
9.    3 \STARS 

10.          ********** 

11.           ********** 

12.            ********** ok 

[answer] 

13. Now create a word which slants the stars the other direction: call it /STARS. It should take the 

height as a stack input and use a constant ten width. Use a DO loop. [answer] 

14. Now redefine this last word, using a BEGIN...UNTIL loop. [answer] 

15. Write a definition called DIAMONDS which will print out the given number of diamond shapes, 

as shown in this example. 
16.    2 DIAMONDS 

17.                       * 

18.                      *** 

19.                     ***** 

20.                    ******* 

21.                   ********* 

22.                  *********** 

23.                 ************* 

24.                *************** 

25.               ***************** 

26.              ******************* 

27.              ******************* 

28.               ***************** 

29.                *************** 

30.                 ************* 

31.                  *********** 

32.                   ********* 

33.                    ******* 

34.                     ***** 

35.                      *** 

36.                       * 

37.                       * 

38.                      *** 

39.                     ***** 

40.                    ******* 

41.                   ********* 

42.                  *********** 

43.                 ************* 

44.                *************** 

45.               ***************** 

46.              ******************* 

47.              ******************* 

48.               ***************** 

49.                *************** 

50.                 ************* 

51.                  *********** 

52.                   ********* 

53.                    ******* 

54.                     ***** 

55.                      *** 

http://www.forth.com/starting-forth/sf6/6-1.forth
http://www.forth.com/starting-forth/sf6/6-2.forth
http://www.forth.com/starting-forth/sf6/6-3.forth
http://www.forth.com/starting-forth/sf6/6-4.forth
http://www.forth.com/starting-forth/sf6/6-5.forth
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56.                       * 

[answer] 

57. In our discussion of LEAVE we gave an example which computed 6% compound interest on a 

starting balance of $1000 for 20 years or until the balance had doubled, whichever came first. 

Rewrite this definition so that it will expect a starting balance and interest rate on the stack and 

will LEAVE when this starting balance has doubled. [answer] 

58. Define a word called ** that will compute exponential values, like this: 
59.    7 2 ** . 49 ok 

(seven squared)  

   2 4 ** . 16 ok 

(two to the fourth power). For simplicity, assume positive exponents only (but make sure ** 

works correctly when the exponent is one — the result should be the number itself). [answer] 

 

http://www.forth.com/starting-forth/sf6/6-6.forth
http://www.forth.com/starting-forth/sf6/6-7.forth
http://www.forth.com/starting-forth/sf6/6-8.forth


86 
 

7. A Number of Kinds of Numbers 

So far we've only talked about signed single-length numbers. In this chapter we'll introduce unsigned 

numbers and double-length numbers, as well as a whole passel of new operators to go along with them. 

 

This chapter is divided in two sections: 

For beginners — this section explains how a computer looks at numbers and exactly what is meant by 

the terms signed or unsigned and by single length or double length. 

For everyone — this section continues our discussion of Forth for beginners and experts alike, and 

explains how Forth handles signed and unsigned, single- and double-length numbers. 

 

Section 1 — For Beginners 

Signed versus Unsigned Numbers 

All digital computers store numbers in binary form. In Forth, the we speak of the stack in terms of the 

implementation's "cell size" (common sizes are 16, 32, and 64 bits, but other cell sizes are possible). 

Below is a view of the least significant sixteen bits of a cell, showing the value of each bit: 

 

If every bit were to contain a 1, the total for just these sixteen bits would be 65,535. Thus in 32 bits we 

can express any value between 0 and 4,294,967,295. Because this kind of number does not let us express 

negative values, we call it an "unsigned number." We indicate unsigned numbers with the letter "u" in our 

tables and stack notations. 

But what about negative numbers? In order to be able to express a positive or negative number, we need 

to sacrifice one bit that will essentially indicate sign. This bit is the one at the far left, the "high-order bit." 

In 31 bits we can express a number as high as 2,147,483,647. When the sign bit contains 1, then we can 

go an equal distance back into the negative numbers. Thus within 32 bits we can represent any number 

from -2,147,483,648 to +2,147,483,647. This should look familiar to you as the range of a single-length 

number, which we denote with the letter "n." 

 

Before we leave you with any misconceptions, we'd better clarify the way negative numbers are 

represented. You might think that it's a simple matter of setting the sign bit to indicate whether a number 

is positive or negative, but it doesn't work that way. 
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To explain how negative numbers are represented, let's return to decimal notation and examine a counter 

such as that found on many web pages. 

 

Let's say the counter has three digits, not five. As more people visit the page, the counter wheels turn and 

the number increases. Starting once again with the counter at 0, now imagine you badly regret having 

visited the page and could "un-visit" it by rolling the counter wheels backward. The first number you see 

is 999, which is, in a sense, the same as -1. The next number will be 998, which is the same as -2, and so 

on. 

The representation of signed numbers in a computer is similar. 

Starting with the 32-bit number 

0000,0000,0000,0000,0000,0000,0000,0000 

and going backwards one number, we get 

1111,1111,1111,1111,1111,1111,1111,1111   (thirty-two ones) 

which stands for 4,294,967,295 in unsigned notation as well as for -1 in signed notation. The number 

1111,1111,1111,1111,1111,1111,1111,1110 

which stands for 4,294,967,294 in unsigned notation, represents -2 in signed notation. 

Here's a chart that shows how a binary number on the stack can be used either as an unsigned number or 

as a signed number: 

 

This bizarre-seeming method for representing negative values makes it possible for the computer to use 

the same procedures for subtraction as for addition. 

To show how this works, let's take a very simple problem: 

 2 

-1 

Subtracting one from two is the same as adding two plus negative one. In single-length binary notation, 

the two looks like this: 

0000,0000,0000,0000,0000,0000,0000,0010 
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while negative-one looks like this: 

1111,1111,1111,1111,1111,1111,1111,1111 

The computer adds them up the same way we would on paper; that is when the total of any column 

exceeds one, it carries a one into the next column. The result looks like this: 

 0000,0000,0000,0000,0000,0000,0000,0010 

+1111,1111,1111,1111,1111,1111,1111,1111 

10000,0000,0000,0000,0000,0000,0000,0001 

As you can see, the computer had to carry a one into every column all the way across, and ended up with 

a one in the thirty-third place. But since the stack is only thirty-two bits wide, the result is simply 

0000,0000,0000,0000,0000,0000,0000,0001 

which is the correct answer, one. 

We needn't explain how the computer converts a positive number to negative, but we will tell you that the 

process is called "two's complementing." 

 
Arithmetic Shift 

While we're on the subject of how a computer performs certain mathematical operations, we'll explain 

what is meant by the mysterious phrases back in Chap. 5: "arithmetic left shift" and "arithmetic right 

shift." 

              A Forth Instant Replay 

2* ( n -- n*2 ) Multiplies by two (arithmetic left shift) 

2/ ( n -- n/2 ) Divides by two (arithmetic right shift) 

LSHIFT ( n u -- n*2^u ) Logical left shift over u positions 

RSHIFT ( n -- n/2^-u ) Logical right shift over u positions 

To illustrate, let's pick a number, say six, and write it in binary form: 

0000,0000,0000,0000,0000,0000,0000,0110 

(4+2). Now let's shift every digit one place to the left, and put a zero in the vacant place in the one's 

column. 

0000,0000,0000,0000,0000,0000,0000,1100 

This is the binary representation of twelve (8+4), which is exactly double the original number. This works 

in all cases, and it also works in reverse. If you shift every digit one place to the right and fill the vacant 

digit with a zero, the result will always be half of the original value. 

In arithmetic shift, the sign bit does not get shifted. This means that a positive number will stay positive 

and a negative number will stay negative when you divide or multiply it by two. 

When the high-order bit shifts with all the other bits, the term is "logical shift." In Forth you can do a 

logical shift of up to 32 places with the words LSHIFT and RSHIFT. 

The important thing for you to know is that most computers can shift digits much more quickly than they 

can go through all the folderol of normal division or multiplication. When speed is critical, it's much 

better to say 

http://www.forth.com/starting-forth/sf5/sf5.html
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2* 

than 

2 * 

and it may even be better to say 

2* 2* 2* 

than 

8 * 

depending on your particular model of computer, but this topic is getting too technical for right now. 

 
An Introduction to Double-length Numbers 

A double-length number is just what you probably expected it would be: a number that is represented in 

two cells instead of one. In a 32-bit Forth implementation, signed double-length numbers have a range of 

-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 (signed) or 0 to 18,446,744,073,709,551,615 

(unsigned). 

 

In Forth, a double-length number takes the place of two single-length numbers on the stack. Operators 

like 2DUP are useful either for double-length numbers or for pairs of single-length numbers. 

One more thing we should explain: to the non-Forth-speaking computer world, the term "double word" 

could mean a 32-bit value, or four bytes. But in Forth, "word" means a defined command. So in order to 

avoid confusion, Forth programmers refer to a single number on the stack as a "cell." A double-length 

number requires two cells. 

 
Other Number Bases 

As you get more involved in programming, you'll need to employ other number bases besides decimal 

and binary, particularly hexadecimal (base 16) and possible octal (base 8). Since we'll be talking about 

these two number bases later on in this chapter, we think you might like an introduction now. 

Computer people began using hexadecimal and octal numbers for one main reason: computers think in 

binary and human beings have a hard time reading long binary numbers. For people, it's much easier to 

convert binary to hexadecimal than binary to decimal, because sixteen is an even power of two, while ten 

is not. The same is true with octal. So programmers usually use hex or octal to express the binary 

numbers that the computer uses for things like addresses and machine codes. Hexadecimal (or simply 

"hex") looks strange at first since it uses the letters A through F. 

Decimal Binary Hexadecimal 

0 0000 0 

1 0001 1 
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2 0010 2 

3 0011 3 

4 0100 4 

5 0101 5 

6 0110 6 

7 0111 7 

8 1000 8 

9 1001 9 

10 1010 A 

11 1011 B 

12 1100 C 

13 1101 D 

14 1110 E 

15 1111 F 

Let's take a single-length binary number: 

00000000000000000111101110100001 

To convert this number to hexadecimal, we first subdivide it into eight units of four bits each: 

| 0000 | 0000 | 0000 | 0000 | 0111 | 1011 | 1010 | 0001 | 

then convert each 4-bit unit to its hex equivalent: 

|0|0|0|0|7|B|A|1| 

or simply 7BA1. 

Octal numbers use only the numerals 0 through 7. Because nowadays most computers use hexadecimal 

representation, we'll skip an octal conversion example. 

We'll have more on conversions in the section titled "Number Conversions" later in this chapter. 

 
The ASCII Character Set 

If the computer uses binary notation to store numbers, how does it store characters and other symbols? 

Binary, again, but in a special code that was adopted as an industry standard many years ago. The code is 

called the American Standard Code for Information Interchange, usually abbreviated ASCII. 

Table 7-1 shows each ASCII character in the system, its ISO 646-1983, ISO 7-bit coded character set for 

information interchange, International Reference Version equivalent (IRV), and its hexadecimal form. 

The characters in the first column (ASCII codes 0-1F hex) are called "control characters" because they 

indicate that the terminal or computer is supposed to do something like ring its bell, backspace, start a 

new line, etc. The remaining characters are called "printing characters" because they produce visible 

characters including letters, the numerals zero through nine, all available symbols and even the blank 

space (hex 20). The only exception is DEL (hex 7F), which is a signal to the computer to ignore the last 

character sent. 

In Chap. 1 we introduced the word EMIT. EMIT takes an ASCII code on the stack and sends it to the 

terminal so that the terminal will print it as a character. For example, 

http://www.forth.com/starting-forth/sf1/sf1.html
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65 EMIT↵>A ok 

66 EMIT↵B ok 

etc. (We're using the decimal, rather than the hex, equivalent because that's what your computer is most 

likely expecting right now.) 

Why not test EMIT on every printing character, "automatically"? 

: PRINTABLES  127 32 DO  I EMIT SPACE  LOOP ; 

PRINTABLES will emit every printable character in the ASCII set; that is, the characters from decimal 

32 to decimal 126. (We're using the ASCII codes as our DO loop index.) 

PRINTABLES↵  ! " # $ % & ' ( ) * + , - . / ...ok 

Table 7.1 — Standard graphic characters & equivalents 

Hex 

ASCII 

Hex 

ASCII 

Hex IRV 

ASCII 

Hex IRV 

ASCII 

Hex IRV 

ASCII 

Hex IRV 

ASCII 

Hex IRV 

ASCII 

Hex IRV 

ASCII 

00 NUL 10 DLE 20      30 0 0 40 @ @ 50 P P 60 ' ' 70 p p 

01 SOH 11 DC1 21 ! ! 31 1 1 41 A A 51 Q Q 61 a a 71 q q 

02 STX 12 DC2 22 " " 32 2 2 42 B B 52 R R 62 b b 72 r r 

03 ETX 13 DC3 23 # # 33 3 3 43 C C 53 S S 63 c c 73 s s 

04 EOT 14 DC4 24 - $ 34 4 4 44 D D 54 T T 64 d d 74 t t 

05 ENQ 15 NAK 25 % % 35 5 5 45 E E 55 U U 65 e e 75 u u 

06 ACK 16 SYN 26 & & 36 6 6 46 F F 56 V V 66 f f 76 v v 

07 BEL 17 ETB 27 ' ' 37 7 7 47 G G 57 W W 67 g g 77 w w 

08 BS 18 CAN 28 ( ( 38 8 8 48 H H 58 X X 68 h h 78 x x 

09 HT 19 EM 29 ) ) 39 9 9 49 I I 59 Y Y 69 i i 79 y y 

0A LF 1A SUB 2A * * 3A : : 4A J J 5A Z Z 6A j j 7A z z 

0B VT 1B ESC 2B + + 3B ; ; 4B K K 5B [ [ 6B k k 7B { { 

0C FF 1C FS 2C , , 3C < < 4C L L 5C \ \ 6C l l 7C | | 

0D CR 1D GS 2D - - 3D = = 4D M M 5D ] ] 6D m m 7D } } 

0E SM 1E RS 2E . . 3E > > 4E N N 5E ^ ^ 6E n n 7E ~ ~ 

0F SI 1F US 2F / / 3F ? ? 4F O O 5F      6F o o     

Some control (non-printing) characters that are good to know include the following: 

name operation decimal equivalent 

BS backspace 8 

LF line feed 10 

CR carriage return 13 

Experiment with these control characters, and see what they do. 

ASCII is designed so that each character can be represented by one byte. The tables in this book use the 

letter "c" to indicate a byte value that is being used as a coded ASCII character. 

 
Bit Logic 

The words AND and OR (which we introduced in Chap. 4) use "bit logic"; that is, each bit is treated 

independently, and there are no "carries"from one bit-place to the next. For example, let's see what 

happens when we AND these two binary numbers: 

0000,0000,0000,0000,0000,0000,1111,1111 

0000,0000,0000,0000,0110,0101,1010,0010  AND 

http://www.forth.com/starting-forth/sf4/sf4.html
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0000,0000,0000,0000,0000,0000,1010,0010 

For any result-bit to be "1," the respective bits in both arguments must be "1." Notice in this example that 

the argument on top contains all zeroes in the high-order bytes and all ones in the low-order byte. The 

effect on the second argument in this example is that the low-order eight bits are kept but the high-order 

twenty-four bits are all set to zero. Here the first argument is being used as a "mask," to mask out the 

high-order bytes of the second argument. 

The word OR also uses bit logic. For example, 

1000,0100,0010,0001,1000,1001,0000,1001 

0110,0110,0110,0110,0000,0011,1100,1000  OR 

1110,0110,0110,0111,1000,1011,1100,1001 

A "1" in either argument produces a "1" in the result. Again, each column is treated separately,with no 

carries. 

By clever use of masks, we could even use a 32-bit value to hold 32 separate flags. For example,we could 

find out whether this bit 

1000,0100,0010,0001,1000,1001,0000,1001 

                    ^ 

is "1" or "0" by masking out all other flags, like this: 

1000,0100,0010,0001,1000,1001,0000,1001 

0000,0000,0000,0000,1000,0000,0000,0000  AND 

0000,0000,0000,0000,1000,0000,0000,0000 

Since the bit was "1," the result is "true." Had it been "0," the result would have been "0" or"false." 

We could set the flag to "0" without affecting the other flags by using this technique: 

1000,0100,0010,0001,1000,1001,0000,1001 

1111,1111,1111,1111,0111,1111,1111,1111  AND 

1000,0100,0010,0001,0000,1001,0000,1001                ^ 

We used a mask that contains all "1"s except for the bit we wanted to set to "0." We can set the same flag 

back to "1" by using this technique: 

1000,0100,0010,0001,0000,1001,0000,1001 

0000,0000,0000,0000,1000,0000,0000,0000  OR 

1000,0100,0010,0001,1000,1001,0000,1001                ^ 

 

 

Section 2 — For Everybody 

Signed and Unsigned Numbers 

Back in Chap. 1 we introduced the word NUMBER. If the word FIND can't find an incoming string in the 

dictionary, it hands it over to the word NUMBER. NUMBERthen attempts to convert the string into a 

number expressed in binary form. If NUMBERsucceeds, it pushes the binary equivalent onto the stack. 

http://www.forth.com/starting-forth/sf1/sf1.html
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For Beginners 

This means that NUMBER does not check whether the number you've entered as a single-length number 

exceeds the proper range. If you enter a giant number, NUMBER converts it but only saves the least 

significant thirty-two digits. 

NUMBER does not do any range-checking. Because of this, NUMBER can convert either signed or 

unsigned numbers. 

For instance, if you enter any number between 2147483648 and 4294967295, NUMBER will convert it 

as an unsigned number. Any value between -2147483648 and -1 will be stored as a two's-complement 

integer. 

 

This is an important point: the stack can be used to hold either signed or unsigned numbers. Whether a 

binary value is interpreted as signed or unsigned depends on the operators that you apply to it. You decide 

which form is better for a given situation, then stick to your choice. 

We've introduced the word ., which prints a value on the stack as a signed number: 

4294967295 .↵-1 ok 

The word U. prints the binary representation as an unsigned number: 

4294967295 U.↵4294967295 ok 

U. ( u -- ) Prints the unsigned single-length number, followed by a space.  

 

In this book the letter "n" signifies signed single-length numbers, while the letter "u" signifies unsigned 

single-length numbers. (We've already introduced U.R, which prints an unsigned single-length number 

right-justified within a given column width.) 

Here is a table of additional words that use unsigned numbers: 
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UM* 
( u1 u2 -- 

ud ) 

Multiplies two single-length numbers. Returns a double-length result. All values 

are unsigned.  

UM/MOD 
( ud u1 -- 

u2 u3 ) 

Divides a double-length by a single-length number. Returns a single-length 

quotient u2 and remainder u3. All values are unsigned.  

U< 
( u1 u2 -- f 

) 
Leaves true if u1 < u2, where both are treated as single-length unsigned integers.  

Number Bases 

When you first start Forth, all number conversions use base ten (decimal), for both input and output. 

 

You can easily change the base by executing one of the following commands: 

HEX ( -- ) Sets the base to sixteen. 

OCTAL ( -- ) Sets the base to eight (available on some systems). 

DECIMAL ( -- ) Returns the base to ten. 

When you change the number base, its stays changed until you change it again. So be sure to declare 

DECIMAL as soon as you're done with another number base. 

These commands make it easy to do number conversions in "calculator style." 

For example, to convert decimal 100 into hexadecimal, enter 

        DECIMAL 100 HEX .↵64 ok 

To convert hex F into decimal (remember you are already in hex), enter 

        0F DECIMAL .↵15 ok 

Make it a habit, starting right now, to precede each hexadecimal value with a zero, as in 

        0A 0B 0F 

This practice avoids mix-ups with possibly predefined words as DEADBEEF, BAD, DEC etc. 

 
Handy Hint 

A definition of BINARY — or Any-ARY 

Beginners who want to see what numbers look like in binary notation may enter this definition: 

: BINARY  2 BASE ! ; 
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The new word BINARY will operate just like OCTAL or HEX but will change the number base to two. 

On systems which do not have the word OCTAL, experimenters may define 

: OCTAL  8 BASE ! ; 

 

Double-length Numbers 

Most ANS Forth systems support double-length numbers to some degree. The standard way to enter a 

double-length number onto the stack (whether from the keyboard or from a file) is to punctuate it with a 

period at the end. When the text interpreter processes a number that is immediately followed by a decimal 

point and is not found as a definition name, it is converted to a double-cell number. 

For example, when you type 

200000.↵ 

 

NUMBER recognizes the period at the as a signal that this value should be converted to double-length. 

NUMBER then pushes the value onto the stack as two consecutive "cells" (cell is the Forth term for a 

single-length item on the stack), the high order cell on top. 

Some Forth implementations (including SwiftForth) will convert any number that contains the following 

characters as a double number: 

 + , - . / : 

The Forth word D. prints a double-length number without any punctuation. 

D. ( d -- ) Prints the signed double-length number, followed by one space.  

 

In this book, the letter "d" stands for a double-length signed integer. 

For example, having entered a double-length number, if you were now to execute D.,the computer would 

respond: 

D.↵200000 ok 

In the next section we'll show you how to define your own equivalents to D. which will print whatever 

punctuation you want along with the number. 
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Number Formatting — Double-length Unsigned 

$200.00   12/31/80  999-6784   6:32:59   98.6 

The above numbers represent the kinds of output you can create by defining your own "number-

formatting words" in Forth. This section will show you how. 

The simplest number-formatting definition we could write would be 

: UD.  <# #S #> TYPE ; 

UD. will print an unsigned double-length number. The words <# and #> (respectively pronounced 

bracket-number and number-bracket) signify the beginning and the end of the number-conversion 

process. In this definition, the entire conversion is being performed by the single word #S (pronounced 

numbers). #S converts the value on the stack into ASCII characters. It will only produce as many digits as 

are necessary to represent the number; it will not produce leading zeroes. But it always produces at least 

one digit, which will be zero if the value was zero. For example: 

12,345 UD.↵12345ok 

12. UD.↵12ok 

0. UD.↵0ok 

The word TYPE prints the characters that represent the number at your terminal. Notice that there is no 

space between the number and the "ok." To get a space,you would simply add the word SPACE, like this: 

: UD.  <# #S #> TYPE SPACE ; 

Now let's say we have a phone number on the stack, expressed as a double-length unsigned integer. For 

example, we may have typed in: 

999-6784 

(remember that the hyphen tells NUMBER to treat this as a double-length value). We want to define a 

word that will format this value back as a phone number. Let's call it .PH# (for "print the phone number") 

and define it thus: 

: .PH#  <# # # # # [CHAR] - HOLD #S #> TYPE SPACE ; 

 

Our definition of .PH# has everything that UD. has, and more. The Forth word # (pronounced number) 

produces a single digit only. A number-formatting definition is reversed from the order in which the 

number will be printed, so the phrase 

# # # # 

produces the right-most four digits of the phone number. 

Now it's time to insert the hyphen. Using [CHAR] we can get the code value of this ASCII character on 

the stack. The Forth word HOLD takes this ASCII code and inserts it into the formatted number character 

string. 
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We now have three digits left. We might use the phrase 

# # # 

but it is easier to simply use the word #S, which will automatically convert the rest of the number for us. 

If you are more familiar with ASCII codes represented in hexadecimal form, you can use this definition 

instead: 

HEX : .PH#  <# # # # # 02D HOLD #S #> TYPE SPACE ; 

DECIMAL 

Either way, the compiled definition will be exactly the same. 

Now let's format an unsigned double-length number as a date, in the following form: 

6/15/03 

Here is the definition: 

: .DATE  <# # # [CHAR] / HOLD   # # [CHAR] / HOLD  #S #>  TYPE SPACE ; 

 

Let's follow the above definition, remembering that it is written in reverse order from the output.The 

phrase 

# # [CHAR] / HOLD 

produces the right-most two digits (representing the year) and the right-most slash. The next occurrence 

of the same phrase produces the middle two digits (representing the day) and the left-most slash. Finally 

#S produces the left-most two digits(representing the month). 

We could have just as easily defined 

# # [CHAR] / HOLD 

as its own word and used this word twice in the definition of .DATE. 



98 
 

 

Since you have control over the conversion process, you can actually convert different digits in different 

number bases, a feature which is useful in formatting such numbers as hours and minutes. For example, 

let's say that you have the time in seconds on the stack, and you want a word which will print hh:mm:ss. 

You might define it this way: 

: SEXTAL  6 BASE ! ; 

: :00  # SEXTAL # DECIMAL [CHAR] : HOLD ; 

: SEC  <# :00 :00 #S #>  TYPE SPACE ; 

We will use the word :00 to format the seconds and minutes. Both seconds and minutes are modulo-60, so 

the right digit can go as high as nine, but the left digit can only go up to five. Thus in the definition of :00 

we convert the first digit (the one on the right)as a decimal number, then go into "sextal" (base 6) and 

convert the left digit. Finally, we return to decimal and insert the colon character. After :00 converts the 

seconds and the minutes,#S converts the remaining hours. 

For example, if we had 4500 seconds on the stack, we would get 

4500. SEC↵1:15:00 ok 

Table 7-2 summarizes the Forth words that are used in number formatting. (Note the "KEY" at the 

bottom, which serves as a reminder of the meanings of "n," "d," etc.) 

Table 7-2 — Number Formatting 

<# Begins the number conversion process. Expects the unsigned double-length number on the stack.  

# 
Converts one digit and puts it into an output character string. # always produces a digit — if 

you're out of significant digits, you'll still get a zero for every #.  

#S 
Converts the number until the result is zero. Always produces at least one digit (0 if the value is 

zero).  

c HOLD 
Inserts, at the current position in the character string being formatted, a character c whose ASCII 

value is on the stack. HOLD (or a word which uses HOLD) must be used between <# and #>. 

SIGN 
Inserts a minus sign in the output string if the top of stack is negative. Usually used with ROT 

immediately before #> for a leading minus sign. 

#> 
Completes number conversion by leaving the character count and address on the stack (these are 

the appropriate arguments for TYPE).  
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Stack effects for number formatting 

phrase stack type of arguments 

<# ... #> 
( ud -- addr u 

) 
double-length unsigned 

<# ... ROT SIGN 

#> 

( n |d| -- addr 

u ) 

double-length signed (where n is the high-order cell of d and |d| is the 

absolute value of d). 

KEY 

n, n1, ... single-length signed 

d, d1, ... double-length signed 

u, u1, ... single-length unsigned 

addr address 

c ASCII character value 

 

Number Formatting — Signed and Single-length 

So far we have formatted only unsigned double-length numbers. The <#...#> form expects only unsigned 

double-length numbers, but we can use it for other types of numbers by making certain arrangements on 

the stack. 

 

For instance, let's look at a simplified version of the system definition of D. (which prints a signed 

double-length number): 

: D.  TUCK DABS <#  #S ROT SIGN  #>  TYPE SPACE ; 

The phrase ROT SIGN inserts a minus string in the character string if the third number on the stack is 

negative. We have prepared for this test by putting a copy of the high-order cell (the one with the sign bit) 

at the bottom of the stack, by using the word TUCK. 

Because <# expects only unsigned double-length numbers,we must take the absolute value of our double-

length signed number, with the word DABS. We now have the proper arrangement of arguments on the 

stack for the <#...#> phrase. In some cases, such as accounting, we may want a negative number to be 

written 

12345- 

in which case we would place the phrase ROT SIGN at the left side of our <#...#>phrase, like this: 

<#  ROT SIGN #S  #> 
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Let's define a word which will print a signed double-length number with a decimal point and two decimal 

places to the right of the decimal. Since this is the form most often used for writing dollars and cents, let's 

call it 

.$ 

and define it like this: 

: .$   TUCK DABS  <#  # # [CHAR] . HOLD  #S ROT SIGN  [CHAR] $ HOLD  #>  TYPE SPACE ; 

Let's try it: 

2000.00 .$↵$2000.00 ok 

or even 

2,000.00 .$↵$2000.00 ok 

We recommend that you save .$, since we'll be using it in some future examples. 

You can also write special formats for single-length numbers. For example, if you want to use an 

unsigned single-length number, simply put a zero on the stack before the word <#. This effectively 

changes the single-length number into a double-length number which is so small that it has nothing (zero) 

in the high-order cell. 

To format a signed single-length number, again you must supply a zero as a high-order cell. But you must 

also leave a copy of the signed number in the third stack position for ROT SIGN, and you must leave the 

absolute value of the number in the second stack position. The phrase to do all this is 

DUP ABS 0 

 

Here are the "set-up" phrases that are needed to print various kinds of numbers: 

Number to be printed Precede <# by 

double-length, unsigned (nothing needed) 

63-bit, plus sign 

TUCK DABS 

(to save the sign in the third stack position for ROT 

SIGN) 

single-length, unsigned 
0 

(to give a dummy high-order part) 

31-bit, plus sign 
DUP ABS 0 

(to save the sign) 

 

Double-length Operators 

Here is a list of double-length math operators: 

D.R ( d width -- ) 
Prints the signed double-length number, right-justified within the field 

width.  

D+ 
( d1 d2 -- d-sum 

) 
Adds two double-length numbers.  
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D- ( d1 d2 -- d-diff) Subtracts two double-length numbers (d1-d2).  

DNEGATE ( d -- -d) Changes the sign of a double-length number.  

DMAX 
( d1 d2 -- d-max 

) 
Returns the maximum of two double-length numbers (d1-d2).  

DMIN ( d1 d2 -- d-min ) Returns the minimum of two double-length numbers (d1-d2).  

D= ( d1 d2 -- f ) Returns true if d1 and d2 are equal.  

D0= ( d -- f ) Returns true if d is zero.  

D< ( d1 d2 -- f ) Returns true if d1 is less than d2.  

DU< ( ud1 ud2 -- f ) Returns true if ud1 is less than ud2. Both numbers are unsigned.  

The initial "D" signifies that these operators may only be used for double-length operations, whereas the 

initial "2," as in 2SWAP and 2DUP, signifies that these operators may be used either for double-length 

numbers or for pairs of numbers. 

Here's an example using D+: 

200,000 300,000 D+ D.↵500000 ok 

 
Mixed-length Operators 

Here's a table of very useful Forth words which operate on a combination of single- and double-length 

numbers: 

M+ 
( d n -- d-

sum ) 

Adds a double-length number to a single-length number. Returns a double-length 

result.  

SM/REM 
( d n1 -- 

n2 n3 ) 

Divide d1 by n1, giving the symmetric quotient n3 and the remainder n2. Input and 

output stack arguments are signed. An ambiguous condition exists if n1 is zero or if 

the quotient lies outside the range of a single-cell signed integer.  

FM/MOD 
( d n1 -- 

n2 n3 ) 

Divide d1 by n1, giving the floored quotient n3 and the remainder n2. Input and 

output stack arguments are signed. An ambiguous condition exists if n1 is zero or if 

the quotient lies outside the range of a single-cell signed integer.  

M* 
( n1 n2 -- 

d-prod ) 

Multiplies two single-length numbers. Returns a double-length result. All values are 

signed.  

M*/ 

( d +n1 n2 

-- d-result 

) 

Multiplies a double-length number by a single-length number and divides the triple-

length result by a single-length number (d*n/n). Returns a double-length result. All 

values are signed.  

Here's an example using M+: 

200,000 7 M+ D.↵200007 ok 

Or, using M*/, we can redefine our earlier version of % so that it will accept a double-length argument: 

: %  100 M*/ ; 

as in 

200.50 15 % D.↵3007 ok 

If you have loaded the definition of .$ we gave in the last Handy Hint, you can enter 

200.50 15 % .$↵$30.07 ok 

We can redefine our earlier definition of R% to get a rounded double-length result, like this: 
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: R%  10 M*/  5 M+  10 SM/REM NIP ; 

then 

987.65 15 R% .$↵$30.08 ok 

Notice that M*/ is the only ready-made Forth word which performs multiplication on a double-length 

argument. To multiply 200,000 by 3, for instance, we must supply a "1" as a dummy denominator: 

200,000 3 1 M*/ D.↵600000 ok 

since 

3 

1 

is the same as 3. 

M*/ is also the only ready-made Forth word that performs division with a double-length result. So to 

divide 200,000 by 4, for instance, we must supply a "1" asa dummy numerator: 

200,000 1 4 M*/ D.↵50000 ok 

 
Numbers in Definitions 

 

When a definition contains a number, such as 

: SCORE-MORE  20 + ; 

the number is compiled into the dictionary in binary form, just as it looks on the stack. 

The number's binary value depends on the number base at the time you compile the definition. For 

example, if you were to enter 

HEX  : SCORE-MORE  14 + ;  DECIMAL 

the dictionary definition would contain the hex value 14, which is the same as the decimal value 20 

(16+4). Henceforth, SCORE-MORE will always add the equivalent of the decimal 20 to the value on the 

stack, regardless of the current number base. 

If, on the other hand, you were to put the word HEX insidethe definition, then you would change the 

number base when you execute the definition. 

For example, if you were to define: 
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DECIMAL 

: EXAMPLE  HEX 20 . DECIMAL ; 

the number would be compiled as the binary equivalent of decimal 20, since DECIMAL was current at 

compilation time. 

At execution time, here's what happens: 

EXAMPLE↵14 ok 

The number is output in hexadecimal. 

For the record, a number that appears inside a definition is called a "literal." (Unlike the words in the rest 

of the definition which allude to other definitions, a number must be taken literally.) 

Here is a list of the Forth words we've covered in this chapter: 

Unsigned operators 

U. ( u -- ) Prints the unsigned single-length number, followed by one space.  

UM* 
( u1 u2 -- 

ud ) 

Multiplies two single-length numbers. Returns a double-length result. All values 

are unsigned.  

UM/MOD 
( ud u1 -- 

u2 u3 ) 

Divides a double-length by a single-length number. Returns a single-length 

quotient and remainder. All values are unsigned.  

U< 
( u1 u2 -- f 

) 
Leaves true if u1 < u2, where both are treated as single-length unsigned integers.  

Number bases 

HEX ( -- ) Sets the base to sixteen. 

OCTAL ( -- ) Sets the base to eight (available on some systems). 

DECIMAL ( -- ) Returns the base to ten. 

Number formatting operators 

<# Begins the number conversion process. Expects the unsigned double-length number on the stack.  

# 
Converts one digit and puts it into an output character string. # always produces a digit — if 

you're out of significant digits, you'll still get a zero for every #.  

#S 
Converts the number until the result is zero. Always produces at least one digit (0 if the value is 

zero).  

c HOLD 
Inserts, at the current position in the character string being formatted, a character cwhose ASCII 

value is on the stack. HOLD (or a word which uses HOLD) must be used between <# and #>. 

SIGN 
Inserts a minus sign in the output string if the top of stack is negative. Usually used with ROT 

immediately before #> for a leading minus sign. 

#> 
Completes number conversion by leaving the character count and address on the stack (these are 

the appropriate arguments for TYPE).  

Stack effects for number formatting 

phrase stack type of arguments 

<# ... #> ( d -- addr u ) double-length unsigned 

<# ... ROT SIGN 

#> 

( n |d| -- addr 

u ) 

double-length signed (where n is the high-order cell of d and |d| is the 

absolute value of d). 

Double-length operators 

D+ 
( d1 d2 -- d-sum 

) 
Adds two double-length numbers.  

D- ( d1 d2 -- d-diff ) Subtracts two double-length numbers (d1-d2).  

DNEGATE ( d -- -d ) Changes the sign of a double-length number.  

DMAX 
( d1 d2 -- d-max 

) 
Returns the maximum of two double-length numbers (d1-d2).  

DMIN ( d1 d2 -- d-min ) Returns the minimum of two double-length numbers (d1-d2).  
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D= ( d1 d2 -- f ) Returns true if d1 and d2 are equal.  

D0= ( d -- f ) Returns true if d is zero.  

D< ( d1 d2 -- f ) Returns true if d1 is less than d2.  

DU< ( ud1 ud2 -- f ) Returns true if ud1 is less than ud2. Both numbers are unsigned.  

D.R ( d width -- ) 
Prints the signed double-length number, right-justified within the field 

width.  

Mixed-length operators 

M+ 
( d n -- d-

sum ) 

Adds a double-length number to a single-length number. Returns a double-length 

result.  

SM/REM 
( d n1 -- 

n2 n3 ) 

Divide d1 by n1, giving the symmetric quotient n3 and the remainder n2. Input and 

output stack arguments are signed. An ambiguous condition exists if n1 is zero or if 

the quotient lies outside the range of a single-cell signed integer.  

FM/MOD 
( d n1 -- 

n2 n3 ) 

Divide d1 by n1, giving the floored quotient n3 and the remainder n2. Input and 

output stack arguments are signed. An ambiguous condition exists if n1 is zero or if 

the quotient lies outside the range of a single-cell signed integer.  

M* 
( n1 n2 -- 

d-prod ) 

Multiplies two single-length numbers. Returns a double-length result. All values are 

signed.  

M*/ 

( d +n1 n2 

-- d-result 

) 

Multiplies a double-length number by a single-length number and divides the triple-

length result by a single-length number (d*n/n). Returns a double-length result. All 

values are signed.  

KEY 

n, n1, ... single-length signed 

d, d1, ... double-length signed 

u, u1, ... single-length unsigned 

addr address 

c ASCII character value 

 

Review of Terms 

Arithmetic left and right shift 

the process of shifting all bits in a number, except the sign bit, to the left or right, in effect 

doubling or halving the (assumed signed) number, respectively. 

Logical left and right shift 

the process of shifting all bits in a number, including the sign bit, to the left or right, in effect 

doubling or halving the (assumed unsigned) number, respectively. 

ASCII 

a standardized system of representing input/output characters as byte values. Acronym for 

American Standard Code for Information Interchange. (Pronounced ask-key) 

Binary 

number base 2. 

Byte 

the standard term for an 8-bit value. 

Cell 

the Forth term for a single-cell value. 

Decimal 

number base 10. 

Hexadecimal 

number base 16. 

Literal 

in general, a number of symbol which represents only itself; in Forth, a number that appears inside 

a definition. 

Mask 
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a value which can be " superimposed" over another, hiding certain bits and revealing only those 

bits that we are interested in. 

Number formatting 

the process of printing a number, usually in a special form such as 3/13/03 or $47.93. 

Octal 

number base 8. 

Sign bit high-order bit 

the bit which, for a signed number, indicates whether it is positive or negative and, for an 

unsigned number, represents the bit of the highest magnitude. 

Two's complement 

for any number, the number of equal absolute value but opposite sign. To calculate 10 - 4, the 

computer first produces the two's complement of 4, (i.e., -4), then computes 10 + (-4). 

Unsigned number 

a number which is assumed to be positive. 

Unsigned single-length number 

an integer which falls within the range of 0 to 2147483647. 

Word 

In Forth, a defined dictionary entry, elsewhere, a term for a 16-bit value. 

Integer division 

produces a quotient q and a remainder r by dividing operand a by operand b. Division operations 

return q, r, or both. The identity b*q + r = a holds for all a and b. 

Floored division 

is integer division in which the remainder carries the sign of the divisor or is zero, and the quotient 

is rounded to its arithmetic floor. 

Symmetric division 

is integer division in which the remainder carries the sign of the dividend or is zero and the 

quotient is the mathematical quotient "rounded towards zero" or "truncated". 

 

 
 

Problems — Chapter 7 

1. Veronica Wainwright couldn't remember the upper limit for a signed single-length number, and 

she had no book to refer to, only a Forth terminal. So she wrote a definition called N-MAX, using 

a BEGIN... UNTIL loop. When she executed it, she got 

2. ↵2147483647 ok 

What was her definition? [answer] 

3. Since you now know that AND and OR employ bit logic, explain why the following example 

must use OR instead of +: 
4. : MATCH   humorous sensitive AND 

5.   art-loving music-loving OR AND 

6.   smoking 0= AND 

7.   IF  ." I have someone you should meet " THEN ; 

8. Write a definition that "rings" your terminal's bell three times. Make sure that there is enough of a 

delay between the bells so that they are distinguishable. Each time the bell rings, the word 

"BEEP" should appear on the terminal screen. [answer] 

9. Rewrite the temperature conversion definitions which you created for the problems in Chap. 5. 

This time assume that the input and resulting temperatures are to be double-length signed integers 

http://www.forth.com/starting-forth/sf7/7-1.forth
http://www.forth.com/starting-forth/sf7/7-3.forth
http://www.forth.com/starting-forth/sf5/sf5.html
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which are scaled (i.e., multiplied) by ten. For example, if 10.5 degrees is entered, it is a 32-bit 

integer with a value of 105. [answer] 

10. Write a formatted output word named .DEG which will display a double-length signed integer 

scaled by ten as a string of digits, a decimal point, and one fractional digit. For example: 

11. 12.3 .DEG↵12.3 ok 

[answer] 

12. Solve the following conversions:  

0.0° F in Centigrade 

212.0° F in Centigrade 

20.0° F in Centigrade 

16.0° C in Fahrenheit 

-40.0° C in Fahrenheit 

100.0° K in Centigrade 

100.0° K in Fahrenheit 

233.0° K in Centigrade 

233.0° K in Fahrenheit 

13. Write a routine which evaluates the quadratic equation 7x
2
 + 20x + 5 given x, and returns a 

double-length result. 

14. How large an x will work without overflowing sixty-four bits as a signed number? 

15. Write a word which prints the numbers 0 through 16 (decimal) in decimal, hexadecimal, and 

binary form in three columns. E.g., 
16. DECIMAL  0  HEX  0  BINARY     0 

17. DECIMAL  1  HEX  1  BINARY     1 

18. DECIMAL  2  HEX  2  BINARY    10 

19. ... 

20. DECIMAL 16  HEX 10  BINARY 10000 

[answer] 

21. If you enter 

22. ..↵ 

(two periods not separated by a space) and the system responds "ok," what does this tell you? 

[answer] 

23. Write a definition for a phone-number formatting word that will also print the area code with a 

slash if and only if the number includes an area code. E.g., 

24. 555-1234 .PH#  555-1234↵ok 

25. 310/999-6784 .PH#↵310/999-6784 ok 
26. [answer] 

«previous next»  

http://www.forth.com/starting-forth/sf7/7-4.forth
http://www.forth.com/starting-forth/sf7/7-4.forth
http://www.forth.com/starting-forth/sf7/7-6.forth
http://www.forth.com/starting-forth/sf7/7-7.forth
http://www.forth.com/starting-forth/sf7/7-8.forth
http://www.forth.com/starting-forth/sf6/sf6.html
http://www.forth.com/starting-forth/sf6/sf6.html
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8. Variables, Constants, and Arrays 

As we have seen throughout the previous seven chapters, Forth programmers use the stack to store 

numbers temporarily while they perform calculations or to pass arguments from one word to another. 

When programmers need to store numbers more permanently, they use variables and constants. 

In this chapter, we'll learn how Forth treats variables and constants, and in the process we'll see how to 

directly access locations in memory. 

Variables 

Let's start with an example of a situation in which you'd want to use a variable — to store the day's date. 

First we'll create a variable called DATE. We do this by saying 

VARIABLE DATE 

If today is the twelfth, we now say 

12 DATE ! 

that is, we put twelve on the stack, then give the name of the variable, then finally execute the word !, 

which is pronounced store. This phrase stores the number twelve into the variable DATE. 

Conversely, we can say 

DATE @ 

that is, we can name the variable, then execute the word @, which is pronounced fetch. This phrase 

fetches the twelve and puts it on the stack. Thus the phrase 

DATE @ .↵12 ok 

prints the date. 

To make matters even easier, there is a Forth word whose definition is this: 

: ?   @ . ; 

So instead of "DATE-fetch-dot," we can simply type 

DATE ?↵12 ok 

The value of DATE will be twelve until we change it. To change it, we simply store a new number 

13 DATE !↵ok 

DATE ?↵13 ok 

Conceivably we could define additional variables for the month and year: 

VARIABLE DATE   VARIABLE MONTH   VARIABLE YEAR 

then define a word called !DATE (for "store-the-date") like this: 

: !DATE  YEAR !  DATE !  MONTH ! ; 

to be used like this: 
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7 31 03 !DATE↵ok 

then define a word called .DATE (for "print-the-date") like this: 

: .DATE  MONTH ?  DATE ?  YEAR ? ; 

Your Forth system already has a number of variables defined; one is called BASE. BASE contains the 

number base that you're currently working in. In fact, the definition of HEX and DECIMAL (and 

OCTAL, if your system has it) are simply 

: DECIMAL  10 BASE ! ; 

: HEX      16 BASE ! ; 

: OCTAL     8 BASE ! ; 

You can work in any number base by simply storing it into BASE. 

For Experts 

A three-letter code such as an airport terminal name, can be stored as a single-length unsigned number in 

base 36. For example: 

: ALPHA  36 BASE ! ;↵ok 

ALPHA↵ok 

ZAP U.↵ZAP ok 

Somewhere in the definitions of the system words which perform input and output number conversions, 

you will find the phrase 

BASE @ 

because the current value of BASE is used in the conversion process. Thus a single routine can convert 

numbers in any base. This leads us to make a formal statement about the use of variables: 

 

A Closer Look at Variables 

In Forth, variables are appropriate for any value that is used inside a definition which may need to change 

at any time after the definition has already been compiled. 

When you create a variable such as DATE by using the phrase 

VARIABLE DATE 

you are really compiling a new word, called DATE, into the dictionary. A simplified view would look 

like the view below. 

 

DATE is like any other word in your dictionary except that you defined it with the word VARIABLE 

instead of the word :. As a result, you didn’t have to define what your definition would do, the word 

VARIABLE itself spells out what is supposed to happen. And here is what happens: 

When you say 
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12 DATE ! 

Twelve goes onto the stack, after which the text interpreter looks up DATE in the dictionary and, finding 

it, points it out to EXECUTE. 

 

EXECUTE executes a variable by copying the address of the variable’s “empty” cell (where the value 

will go) onto the stack. 

 

The word ! takes the address (on top) and the value (underneath), and stores the value into that location. 

Whatever number used to be at that address is replaced by the new number. 

 

(To remember what order the arguments belong in, think of setting down your parcel, then sticking the 

address label on top.) 

 

The word @ expects one argument only: an address, which in this case is supplied by the name of the 

variable, as in 

DATE @ 

Using the value on the stack as an address, the word @ pushes the contents of that location onto the stack, 

“dropping” the address. (The contents of the location remain intact.) 
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Using a Variable as a Counter 

In Forth, a variable is ideal for keeping a count of something. To reuse our egg-packer example, we might 

keep track of how many eggs go down the conveyor belt in a single day. (This example will work at your 

terminal, so enter it as we go.) 

 

First we can define 

VARIABLE EGGS 

to keep the count in. To start with a clean slate every morning, we could store a zero into EGGS by 

executing a word whose definition looks like this: 

: RESET  0 EGGS ! ; 

 

Then somewhere in our egg-packing application, we would define a word which executes the following 

phrase every time an egg passes an electric eye on the conveyor: 

1 EGGS +! 

The word +! Adds the given value to the contents of the given address. (It doesn’t bother to tell you what 

the contents are.) Thus the phrase 

1 EGGS +! 
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Increments the count of eggs by one. For purposes of illustration, let’s put this phrase inside a definition 

like this: 

: EGG  1 EGGS +! ; 

At the end of the day, we would say 

EGGS ? 

to find out how many eggs went by since morning. 

Let’s try it: 

RESET↵ok 

EGG↵ok 

EGG↵ok 

EGG↵ok 

EGGS ?↵3 ok 

Here’s a review of the words we’ve covered in the chapter so far: 

VARIABLE 

xxx 

( -- ) 

xxx: ( -- addr 

) 

Creates a variable named xxx; the word xxx returns its address when 

executed. 

! ( n addr -- ) Stores a single-length number into the address.  

@ ( addr – n ) Replaces the address with its contents.  

? ( addr -- ) Prints the contents of the address, followed by one space.  

+! ( n addr -- ) Adds a single-length number to the contents of the address.  

   

Constants 

While variables are normally used for values that may change, constants are used for values that won't 

change. In Forth, we create a constant and set its value at the same time, like this: 

 
220 CONSTANT LIMIT 

Here we have defined a constant named LIMIT, and given it the value 220. Now we can use the word 

LIMIT in place of the value, like this: 

: ?TOO-HOT  LIMIT > IF  ." Danger -- reduce heat "  THEN ; 

If the number on the stack is greater than 220, then the warning message will be printed. 

Notice that when we say 

LIMIT 

we get the value, not the address. We don't need the "fetch." 

This is an important difference between variables and constants. The reason for the difference is that with 

variables, we need the address to have the option of fetching or storing. With constants we always want 
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the value; we absolutely never store. (If you really need to store a new value into a "constant", you should 

use a VALUE.) 

One use for constants is to name a hardware address. For example, a microprocessor-controlled portable 

camera application might contain this definition: 

: PHOTOGRAPH   SHUTTER OPEN  TIME EXPOSE  SHUTTER CLOSE ; 

Here the word SHUTTER has been defined as a constant so that execution of SHUTTER returns the 

hardware address of the camera's shutter. It might, for example, be defined: 

HEX 

FFFF3E27 CONSTANT SHUTTER 

DECIMAL 

The words OPEN and CLOSE might be defined simply as 

: OPEN  1 SWAP ! ; 

: CLOSE 0 SWAP ! ; 

so that the phrase 

SHUTTER OPEN 

writes a "1" to the shutter address, causing the shutter to open. 

Here are some situations when it's good to define numbers as constants: 

1. When it's important that you make your application more readable. One of the elements of Forth 

style is that definitions should be self-documenting, as is the definition of PHOTOGRAPH above. 

2. When it's more convenient to use a name instead of the number. For example, if you think you 

may have to change the value (because, for instance, the hardware might get changed) you will 

only have to change the value once — in the file where the constant is defined — then recompile 

your application. 

3. (Only true for less sophisticated Forth compilers) When you are using the same value many times 

in your application. In the compiled form of a definition, reference to a constant requires less 

memory space. 

CONSTANT 

xxx 

( n -- ) 

xxx: ( -- n 

) 

Creates a constant named xxx with the value n; the word xxx returns n when 

executed. 

   

Double-length Variables and Constants 

You can define a double-length variable by using the word 2VARIABLE. For example, 

2VARIABLE DATE 

Now you can use the Forth words 2! (pronounced two-store) and 2@ (pronounced two-fetch) to access 

this double-length variable. You can store a double-length number into it by simply saying 

800,000 DATE 2! 

and fetch it back with 

DATE 2@ D.↵800000 ok 
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Or you can store the full month/date/year into it, like this: 

7/17/03 DATE 2! 

and fetch it back with 

DATE 2@ .DATE↵7/17/03 ok 

assuming that you've loaded the version of .DATE we gave in the last chapter. 

You can define a double-length constant by using the Forth word 2CONSTANT, like this: 

200,000 2CONSTANT APPLES 

Now the word APPLES will place the double-length number on the stack. 

APPLES D.↵200000 ok 

Of course, we can do: 

400,000 2CONSTANT MUCH 

: MUCH-MORE  200,000 D+  MUCH D+ ; 

in order to be able to say 

APPLES MUCH-MORE D.↵800000 ok 
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As the prefix "2" reminds us, we can also use 2CONSTANT to define a pair of single-length numbers. 

The reason for putting two numbers under the same name is a matter of convenience and of saving space 

in the dictionary. 

As an example, recall (from Chap. 5) that we can use the phrase 

355 113 */ 

to multiply a number by a crude approximation of π. We could store these two integers as a 

2CONSTANT as follows: 

355 113 2CONSTANT PI 

then simply use the phrase 

PI */ 

as in 

10000 PI */ .↵31415 ok 

Here is a review of the double-length data-structure words: 

2CONSTANT 

xxx 

( d -- ) 

xxx: ( -- d ) 

Creates a double-length constant named xxx with the value d; the word xxx 

returns d when executed.  

2VARIABLE 

xxx 

( -- )  

xxx: ( -- 

addr ) 

Creates a double-length variable named xxx; the word xxx returns its 

address when executed.  

2! ( d addr -- ) Stores a double-length number into the address.  

2@ ( addr -- d ) Returns the double-length contents of the address.  

 
Arrays 

 

As you know, the phrase 

VARIABLE DATE 

creates a definition which conceptually looks like that at the right. 

Now if you say 

1 CELLS ALLOT 

an additional cell is allotted in the definition, like this: 

http://www.forth.com/starting-forth/sf5/sf5.html
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The result is the same as if you had used 2VARIABLE. By changing the argument to ALLOT, however, 

you can define any number of variables under the same name. Such a group of variables is called an 

"array." 

 

For example, let's say that in our laboratory, we have not just one, but five burners that heat various kinds 

of liquids. 

We can make our word ?TOO-HOT check that all five burners have not exceeded their individual limit if 

we define LIMIT using an array rather than a constant. 

Let's give the array the name LIMITS, like this: 

VARIABLE LIMITS 4 CELLS ALLOT 

The phrase "4 CELLS ALLOT" gives the array an extra four cells (five cells in all). 

 

Suppose we want the limit for burner 0 to be 220. We can store this value by simply saying 

220 LIMITS ! 

because LIMITS returns the address of the first cell in the array. Suppose we want the limit for burner 1 

to be 340. We can store this value by adding 1 CELLS to the address of the original cell, like this: 

340 LIMITS 1 CELLS + ! 

We can store limits for burners 2, 3, and 4 by adding the "offsets" 2 CELLS, 3 CELLS, and 4 CELLS, 

respectively, to the original address. We can define the convenient word 

: LIMIT  ( burner# -- addr ) CELLS LIMITS + ; 



116 
 

to take a burner number on the stack and compute an address that reflects the appropriate offset. 

Now if we want the value 170 to be the limit for burner 2, we simply say 

170 2 LIMIT ! 

or similarly, we can fetch the limit for burner 2 with the phrase 

2 LIMIT ?↵170 ok 

This technique increases the usefulness of the word LIMIT, so that we can redefine ?TOO-HOT as 

follows: 

: ?TOO-HOT ( temp burner# -- ) 

LIMIT @ > IF  ." Danger -- reduce heat "  THEN ; 

which works like this: 

210 0 ?TOO-HOT↵ok 

230 0 ?TOO-HOT↵Danger -- reduce heat ok 

300 1 ?TOO-HOT↵ok 

350 1 ?TOO-HOT↵Danger -- reduce heat ok 

etc. 

 

Another Example — Using an Array for Counting 

Meanwhile, back at the egg ranch: 

Here's another example of an array. In this example, each element of the array is used as a separate 

counter. Thus we can keep track of how many cartons of "extra large" eggs the machine has packed, how 

many "large," and so forth. 

Recall from our previous definition of EGGSIZE (in Chap. 4) that we used four categories of acceptable 

eggs, plus two categories of "bad eggs." 

0 CONSTANT REJECT 

1 CONSTANT SMALL 

2 CONSTANT MEDIUM 

3 CONSTANT LARGE 

4 CONSTANT EXTRA-LARGE 

5 CONSTANT ERROR 

So let's create an array that is six cells long: 

VARIABLE COUNTS 5 CELLS ALLOT 

The counts will be incremented using the word +!, so we must be able to set all the elements of the array 

to zero before we begin counting. The phrase 

COUNTS 6 CELLS 0 FILL 

will fill 6 cells , starting at the address of COUNTS, with zeros. If your Forth system includes the word 

ERASE, it's better to use it in this situation. ERASE fills the given number of bytes with zeroes. Use it 

like this: 

http://www.forth.com/starting-forth/sf4/sf4.html
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COUNTS 6 CELLS ERASE 

FILL ( addr n b -- ) Fills n bytes of memory, beginning at the address, with value b. 

ERASE ( addr n -- ) Stores zeroes into n bytes of memory, beginning at the address. 

For convenience, we can put the phrase inside a definition, like this: 

: RESET  COUNTS 6 CELLS ERASE ; 

Now let's define a word which will give us the address of one of the counters, depending on the category 

number it is given (0 through 5), like this: 

: COUNTER   CELLS COUNTS + ; 

and another word which will add one to the counter whose number is given, like this: 

: TALLY  COUNTER 1 SWAP +! ; 

The "1" serves as the increment for +!, and SWAP puts the arguments for +! in the order they belong, i.e., 

( n addr -- ). 

Now, for instance, the phrase 

LARGE TALLY 

will increment the counter that corresponds to large eggs. 

Now let's define a word which converts the weight per dozen into a category number:  

: CATEGORY ( weight -- category ) 

  DUP 18 < IF   REJECT      ELSE 

  DUP 21 < IF   SMALL       ELSE 

  DUP 24 < IF   MEDIUM      ELSE 

  DUP 27 < IF   LARGE       ELSE 

  DUP 30 < IF   EXTRA-LARGE ELSE 

ERROR 

THEN THEN THEN THEN THEN  NIP ; 

(By the time we'll get to the NIP, we will have two values on the stack: the weight which we have been 

DUPping and the category number, which will be on top. We want only the category number; "NIP" 

eliminates the weight.) 

For instance, the phrase 

25 CATEGORY 

will leave the number 3 (LARGE) on the stack. The above definition of CATEGORY resembles our old 

definition of EGGSIZE, but, in the true Forth style of keeping words as short as possible, we have 

removed the output messages from the definition. Instead, we'll define an additional word which expects 

a category number and prints an output message, like this: 

: LABEL ( category -- ) 

  CASE 

REJECT      OF ." reject "      ENDOF 

SMALL       OF ." small "       ENDOF 

MEDIUM      OF ." medium "      ENDOF 

LARGE       OF ." large "       ENDOF 

EXTRA-LARGE OF ." extra large " ENDOF 

ERROR       OF ." error "       ENDOF 

  ENDCASE ; 
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For example: 

SMALL LABEL↵small ok 

Now we can define EGGSIZE using three of our own words: 

: EGGSIZE  CATEGORY  DUP LABEL  TALLY ; 

Thus the phrase 

23 EGGSIZE 

will print 

medium ok 

at your terminal and update the counter for medium eggs. 

How will we read the counters at the end of the day? We could check each cell in the array separately 

with a phrase such as 

LARGE COUNTER ? 

(which would tell us how many "large" cartons were packed). But let's get a little fancier and define our 

own word to print a table of the day's results in this format: 

QUANTITY    SIZE 

    1      reject 

  112      small 

  132      medium 

  143      large 

  159      extra large 

    0      error 

Since we have already devised category numbers, we can simply use a DO and index on the category 

number, like this: 

: REPORT ( -- ) 

   PAGE ." QUANTITY       SIZE" CR CR 

   6 0 DO     I COUNTER @ 5 U.R 

              7 SPACES 

              I LABEL CR 

     LOOP ; 

(The phrase "I COUNTER @ 5 U.R" takes the category number given by I, indexes into the array, and 

prints the contents of the proper element in a five-column field.) 

 

Factoring Definitions 

This is a good time to talk about factoring as it applies to Forth definitions. We've just seen an example in 

which factoring simplified our problem. 

Our first definition of EGGSIZE from Chap. 4, categorized eggs by weight and printed the name of the 

categories at the terminal. In our present version we factored out the "categorizing" and the "printing" into 

two separate words. We can use the word CATEGORY to provide the argument either for the printing 

word or the counter-tallying word (or both). And we can use the printing word, LABEL, in both 

EGGSIZE and REPORT. 

http://www.forth.com/starting-forth/sf4/sf4.html
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As Charles Moore, the inventor of Forth, has written: 

A good Forth vocabulary contains a large number of small words. It is not enough to break a problem into 

small pieces. The object is to isolate words that can be reused. 

For example, in the recipe: 

Get a can of tomato sauce. 

Open can of tomato sauce. 

Pour tomato sauce into pan. 

Get can of mushrooms. 

Open can of mushrooms. 

Pour mushrooms into pan. 

you can "factor out" the getting, opening, and pouring, since they are common to both cans. Then you can 

give the factored-out process a name and simply write: 

TOMATOES ADD 

MUSHROOMS ADD 

and any chef who's graduated from the Postfix School of Cookery will know exactly what you mean. 

Not only does factoring make a program easier to write (and fix!), it saves memory space, too. A reusable 

word such as ADD gets defined only once. The more complicated the application, the greater the savings. 

Here is another thought about Forth style before we leave the egg ranch. Recall our definition of 

EGGSIZE 

: EGGSIZE  CATEGORY  DUP LABEL  TALLY ; 

CATEGORY gave us a value which we wanted to pas on to both LABEL and TALLY, so we included 

the DUP. To make the definition "cleaner," we might have been tempted to take the DUP out and put it 

inside the definition of LABEL, at the beginning. Thus we might have written: 

: EGGSIZE  CATEGORY  LABEL TALLY ; 

where CATEGORY passes the value to LABEL, and LABEL passes it on to TALLY. Certainly this 

approach would have worked. But then, when we defined REPORT, we would have had to say 

I LABEL DROP 

instead of simply  

I LABEL 

Forth programmers tend to follow this convention: when possible, words should destroy their own 

parameters. In general, it's better to put the DUP inside the "calling definition" (EGGSIZE, here) than in 

the "called" definition (LABEL, here). 

 

Another Example — "Looping" through an Array 

We'd like to introduce a little technique that is relevant to arrays. We can best illustrate this technique by 

writing our own definition of a Forth word called DUMP. DUMP is used to print out the contents of a 

series of memory addresses. The usage is 

addr count DUMP 



120 
 

For instance, we could enter 

COUNTS 6 DUMP 

to print the contents of our egg-counting array called COUNTS. Since DUMP is primarily designed as a 

programming tool to print out the contents of memory locations, it prints either byte-by-byte or cell-by-

cell, depending on the type of addressing our computer uses. Our version of DUMP will print cell-by-cell. 

Obviously DUMP will involve a DO loop. The question is: what should we use for an index? Although 

we might use the count itself (0 - 6) as the loop index, it's better to use the address as the index. 

The address of COUNTS will be the starting index for the loop, while the address plus the count will 

serve as the limit, like this: 

: DUMP ( addr cell-count -- ) 

   CELLS OVER + SWAP 

          DO   CR I @ 5 U.R 

   1 CELLS +LOOP ; 

The key phrase here is 

CELLS OVER + SWAP 

which immediately precedes the DO. 

 

The ending and starting addresses are now on the stack, ready to serve as the limit and index for the DO 

loop. Since we are "indexing on the addresses," once we are inside the loop we merely have to say 

I @  5 U.R 

to print the contents of each element of the array. Since we are examining cells (@ fetches a single-

length, single cell value), we increment the index by one cell each time, by using 

1 CELLS +LOOP 

 

Byte Arrays 

Forth lets you create an array in which each element consists of a single byte rather than a full cell. This is 

useful any time you are storing a series of numbers whose range fits into that which can be expressed 

within eight bits. 
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The range of an unsigned 8-bit number is 0 to 255. Byte arrays are also used to store ASCII character 

strings. The benefit of using a byte array instead of a cell array is that you can get the same amount of 

data in 25% (32-bit Forth) of the memory space. 

 

The mechanics of using a byte array are the same as using a cell array except that 

1. you don't have to use CELLS to manipulate the offset, since each element corresponds to one 

address unit, and 

2. you must use the words C! and C@ instead of ! and @. These words, which operate on byte 

values only, have the prefix "C" because their typical use is accepting ASCII characters. 

C! ( b addr -- ) Stores an 8-bit value into the address.  

C@ ( addr -- b ) Fetches an 8-bit value from the address.  

   

Initializing an Array 

Many situations call for an array whose values never change during the operation of the application and 

which may as well be stored into the array at the same time that the array is created, just as CONSTANTs 

are. Forth provides the means to accomplish this through the two words CREATE and , (pronounced 

create and comma). 

Suppose we want permanent values in our LIMITS array. Instead of saying 

VARIABLE LIMITS 4 CELLS ALLOT 

we can say 

CREATE LIMITS  220 , 340 , 170 , 100 , 190 , 

Usually the above line would be included from a disk file, but it also works interactively. 

Like the word VARIABLE, CREATE puts a new name in the dictionary at compile time and returns the 

address of that definition when it is executed. But it does not "allot" any bytes for a value. 

The word , takes a number off the stack and stores it into the array. So each time you express a number 

and follow it with ,, you add one cell to the array. 
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For Newcomers 

Ingrained habits, learned from English writing, lead some newcomers to forget to type the final , in the 

line. Remember that , does not separate the numbers, it compiles them. 

You can access the elements in a CREATE array just as you would the elements in a VARIABLE array. 

For example: 

LIMITS CELL+ @ .↵340 ok 

You can even store new values into the array, just as you would into a VARIABLE array. 

To initialize a byte-array that has been defined with CREATE, you can use the word C, (c-comma). For 

instance, we could store each of the values used in our egg-sorting definition CATEGORY as follows: 

CREATE SIZES 18 C, 21 C, 24 C, 27 C, 30 C, 255 C, 

This would allow us to redefine CATEGORY using a DO loop rather than as a series of nested 

IF...THEN statements, as follows 

: CATEGORY  6 0 DO  DUP SIZES I + C@  < IF  DROP I LEAVE THEN  LOOP ; 

Note that we have added a maximum (255) to the array to simplify our definition regarding category 5. 

Including the initialization of the SIZES array, this version takes only three lines of source text as 

opposed to six and takes less space in the dictionary, too. 

For People Who Don't Like Guessing How It Works 

The idea here is this: since there are five possible categories, we can use the category numbers as our loop 

index. Each time around, we compare the number on the stack against the element in SIZES, offset by the 

current loop index. As soon as the weight on the stack is greater than one of the elements in the array, we 

leave the loop and use I to tell us how many times we had looped before we "left." Since this number is 

our offset into the array, it will also be our category number. 

Here's a list of the Forth words we've covered in this chapter: 

CONSTANT 

xxx 

( n -- ) 

xxx: ( -- n 

) 

Creates a constant named xxx with the value n; the word xxx returns n when 

executed. 

VARIABLE xxx 

( -- ) 

xxx: ( -- 

addr ) 

Creates a variable named xxx; the word xxx returns its address when 

executed. 

CREATE xxx  

( -- ) 

xxx: ( -- 

addr ) 

Creates a dictionary entry (head and code pointer only) named xxx; the word 

xxx returns its address when executed. 

! ( n addr -- Stores a single-length number into the address.  
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) 

@ 
( addr -- n 

) 
Replaces the address with its contents.  

? ( addr -- ) Prints the contents of the address, followed by one space.  

+! 
( n addr -- 

) 
Adds a single-length number to the contents of the address.  

ALLOT ( n -- ) Adds n bytes to the body of the most recently defined word. 

, ( n -- ) Compiles n into the next available cell in the dictionary.  

C! 
( b addr -- 

) 
Stores an 8-bit value into the address.  

C@ 
( addr -- b 

) 
Fetches an 8-bit value from the address.  

FILL 
( addr n b 

-- ) 
Fills n bytes of memory, beginning at the address, with value b. 

BASE ( n -- ) 
A variable which contains the value of the number base being used by the 

system. 

2CONSTANT 

xxx 

( d -- ) 

xxx: ( -- d 

) 

Creates a double-length constant named xxx with the value d; the word xxx 

returns d when executed.  

2VARIABLE 

xxx 

( -- ) 

xxx: ( -- 

addr ) 

Creates a double-length variable named xxx; the word xxx returns its address 

when executed.  

2! 
( d addr -- 

) 
Stores a double-length number into the address.  

2@ 
( addr -- d 

) 
Returns the double-length contents of the address.  

C, ( b -- ) Compiles b into the next available byte in the dictionary.  

DUMP 
( addr u -- 

) 
Displays u bytes of memory, starting at the address. 

ERASE 
( addr n -- 

) 
Stores zeroes into n bytes of memory, beginning at the address. 

KEY 

n, n1, ... single-length signed 

d, d1, ... double-length signed 

u, u1, ... single-length unsigned 

ud, ud1, ... double-length unsigned 

addr address 

c ASCII character value 

b 8-bit byte 

f Boolean flag 

 
Review of Terms 

Array 

a series of memory locations with a single name. Values can be stored and fetched into the 

individual locations by giving the name of the array and adding an offset to the address. 

Constant 

a value which has a name. The value is stored in memory and usually never changes. 

Factoring 

as it applies to programming in Forth, simplifying a large job by extracting those elements which 

might be reused and defining those elements as operations. 

Fetch 



124 
 

to retrieve a value from a given memory location. 

Initialize 

to give a variable (or array) its initial value(s) before the rest of the program begins. 

Offset 

a number which can be added to the address of the beginning of an array to produce the address of 

the desired location within the array. 

Store 

to place a value in a given memory location. 

Variable 

a location in memory which has a name and in which values are frequently stored and fetched. 

 
 

Problems — Chapter 8 

1. Write two words called BAKE-PIE and EAT-PIE. The first word increases the number of 

available PIES by one. The second decreases the number by one and thanks you for the pie. But if 

there are no pies, it types "What pie?" (make sure you start out with no pies.)  

2. EAT-PIE↵What pie? 

3. BAKE-PIE↵ok 

4. EAT-PIE↵Thank you! ok 

5. Write a word called FREEZE-PIES which takes all the available pies and adds them to the number 

of pies in the freezer. Remember that frozen pies cannot be eaten.  

6. BAKE-PIE BAKE-PIE FREEZE-PIES↵ok 

7. PIES ?↵0 ok 

8. FROZEN-PIES ?↵2 ok 

[answer] 

9. Define a word called .BASE which prints the current value of the variable BASE in decimal. Test 

it by first changing BASE to some value other than ten. (This one is trickier than it may seem.)  

10. DECIMAL .BASE 10↵ok 

11. HEX .BASE 16↵ok 

[answer] 

12. Define a number-formatting word called M. which prints a double-length number with a decimal 

point. The position of the decimal point within the number is movable and depends on the value of 

a variable that you will define as PLACES. For example, if you store a "1" into PLACES, you will 

get  

13. 200,000 M.↵20000.0 ok 

that is, with the decimal point one place from the right. A zero in PLACES should produce no 

decimal point at all. [answer] 

14. In order to keep track of the inventory of colored pencils in your office, create an array, each cell 

of which contains the count of a different colored pencil. Define a set of words so that, for 

example, the phrase  
15. RED PENCILS 

http://www.forth.com/starting-forth/sf8/8-1.forth
http://www.forth.com/starting-forth/sf8/8-2.forth
http://www.forth.com/starting-forth/sf8/8-3.forth
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returns the address of the cell that contains the count of red pencils, etc. Then set these variables to 

indicate the following counts:  

23 red pencils 

15 blue pencils 

12 green pencils 

0 orange pencils 

[answer] 

16. A histogram is a graphic representation of a series of values. Each value is shown by the height or 

length of a bar. In this exercise you will create an array of values and print a histogram which 

displays a line of "*"s for each value. First create an array with about ten cells. Initialize each 

element of the array with a value in the range of zero to seventy. Then define a word PLOT which 

will print a line for each value. On each line print the number of the cell followed by a number of 

"*"s equal to the contents of that cell. 

 

For example, if the array has four cells and contains the values 1, 2, 3 and 4, then PLOT would 

produce: 
17. 1 * 

18. 2 ** 

19. 3 *** 

20. 4 **** 

[answer] 

21. Create an application that displays a tic-tac-toe board, so that two human players can make their 

moves by entering them from the keyboard. For example, the phrase  
22. 4 X! 

puts an "X" in box 4 (counting starts with 1) and produces this display: 

  |   | 

--------- 

X |   | 

--------- 

  |   | 

Then the phrase 

3 O! 

puts an "O" in box 3 and prints the display: 

  |   | O 

--------- 

X |   | 

--------- 

  |   | 

Use a byte array to remember the contents of the board, with the value 1 to signify "X," a -1 to 

signify a "O," and a 0 to signify an empty box. [answer] 

«previous next»  

http://www.forth.com/starting-forth/sf8/8-4.forth
http://www.forth.com/starting-forth/sf8/8-5.forth
http://www.forth.com/starting-forth/sf8/8-6.forth
http://www.forth.com/starting-forth/sf7/sf7.html
http://www.forth.com/starting-forth/sf7/sf7.html
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9. Under the Hood 

Let's stop for a chapter to lift Forth's hood and see what goes on inside. 

Some of the information contained herein we've given earlier, but, at the risk of redundancy, we're now 

going to view the Forth "machine" as a whole, to see how it all fits together. 

Inside INTERPRET 

Back in the first chapter we learned that the text interpreter, whose name is INTERPRET, picks words out 

of the input stream and tries to find their definitions in the dictionary. If it finds a word, INTERPRET has 

it executed. 

 

We can perform these separate operations ourselves by using words that perform the component functions 

of INTERPRET. For instance, the word ' (pronounced tick) finds a definition in the dictionary and returns 

its execution token. If we have defined GREET as we did in Chap. 1, we can now say 

' GREET U.↵ 4956608  ok 

and discover the execution token of GREET (whatever it happens to be). 

We may also directly use EXECUTE. INTERPRET will execute a definition, given its execution token 

("xt") on the stack. Thus we can say 

' GREET EXECUTE↵ Hello, I speak Forth ok 

and accomplish the same thing as if we had merely said GREET, only in a more roundabout way. 

If tick cannot find a word in the dictionary, it executes ABORT" and prints an error message. 

Forth's text interpreter uses a word related to tick that returns a zero flag if the word is found. The name 

and usage of the word varies, but the conditional structure of the INTERPRET phrase always looks like 

this: 

(find the word) IF    (convert to a number) 

                ELSE  (execute the word) 

                THEN 

that is, if the string is not a defined word in the dictionary, INTERPRET tries to convert it as a number. If 

it is a defined word, INTERPRET executes it. 

The word ' has several uses. For instance, you can use the phrase 

' GREET . 

to find out whether GREET has been defined, without actually having to execute it (it will either print the 

xt or respond with an error).  

http://www.forth.com/starting-forth/sf1/sf1.html
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You can also use the xt to DUMP the contents of the definition, like this: 

' GREET 12 CELLS DUMP 

 A054620: 68 13 40 00  00 00 00 00 - 60 3D 03 0A  15 48 65 6C  h.@.....'=...Hel 

 A054630: 6C 6F 2C 20  49 20 73 70 - 65 61 6B 20  46 6F 72 74  lo, I speak Fort 

 A054640: 68 20 20 20  38 02 41 00 - 00 00 00 00  00 00 00 00  h   8.A......... 

 ok 

Or you can use tick to implement something called "vectored execution." Which brings us to the next 

section… 

 
Vectored Execution 

While it sounds hairy, the idea of vectored execution is really quite simple. Instead of executing a 

definition directly, as we did with the phrase 

' GREET EXECUTE 

we can execute it indirectly by keeping its xt in a variable, then executing the contents of the variable, like 

this: 

' GREET pointer ! 

pointer @ EXECUTE 

The advantage is that we can change the pointer later, so that a single word can be made to perform 

different things at different times. 

Here is an example that you can try yourself: 

( 1 ) : HELLO    ." Hello " ; 

( 2 ) : GOODBYE  ." Goodbye " ; 

( 3 ) VARIABLE 'aloha  ' HELLO 'aloha ! 

( 4 ) : ALOHA    'aloha @ EXECUTE ; 

In the first two lines, we've simply created words which print the strings "Hello" and "Goodbye." In line 

3, we've defined a variable called 'aloha. This will be our pointer. We've initialized the pointer with the xt 

of HELLO. In line 4, we've defined the word ALOHA to execute the definition whose xt is in 'aloha. 

Now if we execute ALOHA, we will get 

ALOHA↵ Hello ok 

Alternatively, if we execute the phrase 

' GOODBYE 'aloha ! 

to store the xt of GOODBYE into 'aloha, we will get 

ALOHA↵ Goodbye ok 

Thus the same word, ALOHA, can do two different things. 

Notice that we named our pointer 'aloha (which we would pronounce tick-aloha). Since tick provides an 

xt, we use it as a prefix to suggest "the xt of" ALOHA. It is a Forth convention to use this prefix for 

vectored execution pointers. 
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Tick always goes to the next word in the input stream. What if we put tick inside a definition? When we 

execute the definition, tick will find the next word in the input stream, not the next word in the definition. 

Thus we could define 

: SAY  ' 'aloha ! ; 

then enter 

SAY HELLO↵ ok 

ALOHA↵ Hello ok 

 

or 

SAY GOODBYE↵ ok 

ALOHA↵ Goodbye ok 

to store the xt of either HELLO or GOODBYE into 'aloha. 

But what if we want tick to use the next word in the definition? We must use the word ['] (bracket-tick-

bracket) instead of tick. For example: 

: COMING   ['] HELLO   'aloha ! ; 

: GOING    ['] GOODBYE 'aloha ! ; 

Now we can say 

COMING↵ ok 

ALOHA↵ Hello ok 

GOING↵ ok 

ALOHA↵ Goodbye ok 

Here are the commands we've covered so far: 

' xxx ( -- addr ) 
Attempts to find the execution token of xxx (the word that follows in the input stream) 

in the dictionary.  

['] 

compile 

time 

( -- ) 

run time 

( -- addr ) 

Used only in a colon definition, compiles the execution token of the next word in the 

definition as a literal.  
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The Structure of a Dictionary Entry 

All definitions, whether they have been defined by :, by VARIABLE, by VALUE, by CREATE, or by 

any other "defining word," share these basic parts: 

name field 

link field 

code pointer field 

data field 

Using the variable DATE as an example, here's how these components are arranged within each 

dictionary entry. In this diagram, each horizontal line represents one cell in the dictionary: 

 

No two Forth systems are alike in this respect. There may be more basic parts, their size may differ, and 

the order of the components almost certainly differs. 

In this book we're only concerned with the functions of the four components, not with their order inside a 

dictionary entry. 

Name 

In our example, the first byte contains the number of characters in the full name of the defined word 

(there are four letters in DATE). The next four bytes contain the ASCII representations of the four letters 

in the name of the defined word. 

Notice the "precedence bit" in the diagram. This bit is used during compilation to indicate whether the 

word is supposed to be executed during compilation, or to simply be compiled into the new definition. 

More on this in Chap. 11. 

Link 

 

http://www.forth.com/starting-forth/sf11/sf11.html
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The "link" cell contains the address of the previous definition in the dictionary list. The link cell can be 

used in linearly searching the dictionary. To simplify things a bit, imagine that it works this way: 

Each time the compiler adds a new word to the dictionary, he sets the link field to point to the address of 

the previous definition. Here he is setting the link field of CUISINART to point to the definition of CAR. 

 

At search time, tick (or bracket-tick-bracket, etc.) starts with the most recent word and follows the "chain" 

backwards, using the address in each link cell to locate the next definition back. 

The link field of the first definition in the dictionary contains a zero, which tells tick to give up; the word 

is not in the dictionary. 

 
Code Pointer 

 

Next is the "code pointer." The xt contained in this pointer is what distinguishes a variable from a 

constant or a colon definition. It is the address of the instruction that is executed first when a particular 

type of word is executed. Conceptually, in the case of a variable, the pointer points to code that pushes the 

address of the variable on the data stack. In the case of a constant, the pointer points to code that pushes 

the contents of the constant on the data stack. In the case of a colon definition, the pointer points to code 

that executes the rest of the words in the colon definition. In practice there are many ways to implement 

this concept, including native code realizations. 
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The code that is pointed to is called the "run-time code" because it is used when a word of that type is 

executed (not when a word of that type is defined or compiled). 

All variables (conceptually) have the same code pointer; all constants have the same code pointer of their 

own, and so on. 

 
Data field 

Following the code pointer is the data field. In variables and constants, the data field is only one cell. In a 

2VARIABLE or a 2CONSTANT, the data field is two cells. In an array, the data field can be as long as 

you want it. In a colon definition, the length of the data field depends on the length of the definition, as 

we'll explain in the next section. Strictly speaking, the colon definition of a modern Forth does not have a 

data field. 

The xt that is supplied by tick and expected by EXECUTE is the code pointer defined above. The 

beginning of the data field can be found with >BODY, a word that computes the data field given an xt. 

>BODY does not work for colon definitions. Some Forths may even forbid the use of >BODY on any 

system data structure (variables constants, user, etc.). 

 

The Basic Structure of a Colon Definition 

While the format of the head and code pointer is the same for all types of definitions, the format of the 

data field varies from type to type. Let's look at the data field of a colon definition. 

The data field of a colon definition contains the xts of the previously defined words which comprise the 

definition. Here is the dictionary entry for the definition of PHOTOGRAPH, which is defined as 

: PHOTOGRAPH   SHUTTER OPEN  TIME EXPOSE  SHUTTER CLOSE ; 

 

When PHOTOGRAPH is executed, the definitions that are pointed to by the successive xts are executed 

in turn. The mechanism which reads the list of xts and executes the definitions they point to is called the 

"address interpreter." 

The word ; at the end of the definition compiles the xt of a word called EXIT. As you can see in the 

figure, the xt of EXIT resides in the last cell of the dictionary entry. The address interpreter will execute 

EXIT when it gets to this address, just as it executes the other words in the definition. EXIT terminates 

the execution of the address interpreter, as we will see in the next section. 
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Nested Levels of Execution 

The function of EXIT is to return the flow of execution to the next higher-level definition that refers to 

the current definition. Let's see how this works in simplified terms. 

Suppose that DINNER consists of three courses: 

: DINNER   SOUP ENTREE DESSERT ; 

and that tonight's ENTREE consists simply of 

: ENTREE   CHICKEN RICE ; 

 

We are executing DINNER and we have just finished the SOUP. The pointer that is used by the address 

interpreter is called the "interpreter pointer". Since the next course after the SOUP is the ENTREE, our 

interpreter pointer is pointing to the cell that contains the xt of ENTREE. 

The action the address interpreter performs can be seen as "subroutine calling" all the xts in the list, with 

the return stack used to keep return addresses, and the EXIT working as the machine's RTS (return from 

subroutine) instruction. 

 
 

One Step Beyond 

Now you're of course wondering: what happens when we finally execute the EXIT in DINNER. Whose 

return address is on the return stack? What do we return to? 

Well, remember that DINNER has just been executed by EXECUTE, which is a component of 

INTERPRET. INTERPRET is a loop which checks the entire input stream. Assuming that we entered ↵ 

after DINNER, then there is nothing more to interpret. So when we exit INTERPRET, where does that 

leave us? In the outermost definition of each terminal, called QUIT. 
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QUIT, in simplified form, looks like this: 

: QUIT  BEGIN  (clear return stack) 

               (accept input) 

               INTERPRET 

               ." ok " CR 

               AGAIN ; 

(The parenthetical comments represent words and phrases not yet covered.) We can see that after the 

word INTERPRET comes a dot-quote message, "ok," and a CR, which of course are what we see after 

interpretation has been completed. 

Next is the phrase 

AGAIN 

which unconditionally returns us to the beginning of the loop, where we clear the return stack and once 

again wait for input. 

If we execute QUIT at any level of execution, we will immediately cease execution of our application and 

re-enter QUIT's loop. The return stack will be cleared (regardless of how many levels of return addresses 

we had there, since we could never use any of them now) and the system will wait for input. You can see 

why QUIT can be used to keep the message "ok" from appearing at our terminal. 

The definition of ABORT" uses QUIT. 

 

Abandoning the Nest 

It's possible to include EXIT in the middle of a definition. For example, if we were to redefine ENTREE 

as follows: 

: ENTREE   CHICKEN EXIT RICE ; 

then when we subsequently execute DINNER, we will exit right after CHICKEN and return to the next 

course after the ENTREE, i.e., DESSERT. 

 

EXIT is commonly used to exit from deeply nested conditional structures. 

EXIT ( -- ) When compiled within a colon definition, terminates execution at that point. 

QUIT ( -- ) Clears all stacks and returns control to the terminal. No message is given. 
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Forth Geography 

 
This is the memory map of a typical Forth system: 

System Variables 

This section of memory contains "system variables" which are created by the basic Forth core and used 

by the entire system. They are not generally used by the user. 

User Dictionary 

The dictionary will grow into higher memory as you add your own definitions. The next available cell in 

the dictionary at any time is pointed to by a variable called CP. During the process of compilation, the 

pointer CP is adjusted cell-by-cell as the entry is being added to the dictionary. Thus CP is the compiler's 

bookmark; it points to the place in the dictionary where the compiler can next compile. 

CP is also used by the word ALLOT, which advances CP by the number of bytes given. For example, the 

phrase 

5 CELLS ALLOT 

adds twenty to CP so that the compiler will leave room in the dictionary for a five-cell array. 

A related word is HERE, which is simply defined as 

: HERE   CP @ ; 

to put the value of CP on the stack. The word , (comma), which stores a single-length value into the next 

available cell in the dictionary, is simply defined 

: ,   HERE !  CELL ALLOT ; 

that is, it stores a value into HERE and advances the dictionary pointer one cell to leave room for it. 

You can use HERE to determine how much memory any part of your application requires, simply by 

comparing the HERE from before with the HERE after compilation. For example, 
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HERE  S" random.frt" INCLUDED  HERE SWAP - .↵ 196 ok 

indicates that the definitions loaded by the file random.frt filled 196 bytes of memory space in the 

dictionary. 

 
The Pad 

At a certain distance from HERE in your dictionary, you will find a small region of memory called the 

"pad." Like a scratch pad, it is usually used to hold ASCII character strings that are being manipulated 

prior to being sent out to a terminal. For example, the number formatting words use the pad to hold the 

ASCII numerals during the conversion process, prior to TYPE. 

The size of the pad is indefinite. In most systems there are hundreds of kilobytes between the beginning 

of the pad and the top of the parameter stack. 

Since the pad's beginning address is defined relative to the last dictionary entry, it moves every time you 

add a new definition or execute FORGET or MARKER. This arrangement proves safe, however, because 

the pad is never used when any of these events are occurring. The word PAD returns the current address 

of the beginning of the pad. It is defined simply: 

: PAD   HERE 340 + ; 

that is, it returns an address that is a fixed number of bytes beyond HERE. (The actual number varies.) 

 
Parameter Stack 

Far above the pad in memory is the area reserved for the parameter stack. Although we like to imagine 

that values actually move up or down somewhere as we "pop them off" and "push them on," in reality 

nothing moves. The only thing that changes is a pointer to the "top" of the stack. 

As you can see below, when we "put a number on the stack," what really happens is that the pointer is 

"decremented" (so that it points to the next available location towards low memory), then our number is 

stored where the pointer is pointing. When we "remove a number from the stack," the number is fetched 

from the location where the pointer is pointing, then the pointer is incremented. Any numbers above the 

stack pointer on our map are meaningless. 

 

As new values are added to the stack, it "grows towards low memory." 
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The stack pointer is fetched with the word SP@ (pronounced s-p-fetch). Since SP@ provides the address 

of the top stack location, the phrase 

SP@ @ 

fetches the contents of the top of stack. This operation, of course, is identical to that of DUP. If we had 

five values on the stack, we could copy the fifth one down with the phrase 

SP@ 4 CELLS + @ 

(but this is not considered good programming practice). 

 

The bottom of the stack is pointed to by a variable called SP0 (s-p-zero). SP0 always contains the address 

of the next cell below the "empty stack" cell. 

Notice that with double-length numbers, the high-order cell is stored at the lower memory address 

whether on the stack or in the dictionary. The operators 2@ and 2! keep the order of the cells consistent. 

 

 
Input Message Buffer 
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TIB contains the starting address for the "input message buffer," or "Terminal Input Buffer," which grows 

towards high memory (the same direction as the pad). When you enter text from the terminal, it gets 

stored into this buffer where the text interpreter will scan it. 

Return Stack 

Above the buffer resides the return stack, which operates identically to the parameter stack. There are no 

high-level Forth words analogous to SP0 and SP@ that refer to the return stack. 

User Variables 

The next section of memory contains "user variables." These variables include BASE, SP0, and many 

others that we'll cover in an upcoming section. 

This completes our journey across the memory map of a typical Forth system. Here are the words we've 

just covered that relate to memory regions in the Forth system: 

HERE 
( -- addr 

) 
Returns the next available dictionary location. 

PAD 
( -- addr 

) 

Returns the beginning address of a scratchpad area used to hold character strings for 

intermediate processing. 

SP@ 
( -- addr 

) 
User variable. Return the address of the top of the stack before SP@ is executed.  

SP0 
( -- addr 

) 
User variable. Contains the address of the bottom of the parameter stack.  

   

User Variables 

The following list shows most of the user variables. Some we won't ever mention again. Don't try to 

memorize this table. Just remember where you can find it. 

TIB Contains the address of the start of the terminal input buffer.  

#TIB Contains the size of the terminal input buffer.  

SCR A pointer to the current block number (set by LIST).  

BASE Number conversion base. 

CP Dictionary pointer. Pointer to the next available byte.  

>IN A pointer to the current position in the input stream.  

BLK 
If non-zero, a pointer to the block being interpreted by LOAD. A zero indicates interpretation from 

the terminal (via the input message buffer).  

User variables are not like ordinary variables. With an ordinary variable (one defined by the word 

VARIABLE), the value is kept in the body of the dictionary entry. Each user variable, on the other hand, 

is kept in an array called the "user table." The dictionary entry for each user variable is located elsewhere; 

its body contains an offset into the user table. When you execute the name of a user variable, such as CP, 

this offset is added to the beginning address of the user table, allowing you to use @ or ! in the normal 

way. 
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The main advantage of user variables is that any number of tasks can use the same definition of a variable 

and each get its own value (because each task has not only its own stacks, but also its own user table). 

Each task that executes 

BASE @ 

gets the value for BASE from its own user table. This saves a lot of room in the system while still 

allowing each task to execute independently. 

User variables are defined by the word USER. The sequence of user variables in the table and their offset 

values vary from one system to another. 

To summarize, there are three kinds of variables: System variables contain values used by the entire Forth 

system. User variables contain values that are unique for each task, even though the definitions can be 

used by all tasks in the system. Regular variables can be accessible either system-wide or within a single 

task only. 

 

Forth Vocabularies 

Forth systems provide ways to manage the dictionary by organizing words into vocabularies. For 

example, the programmer can create a vocabulary for all words related to a specific project. The system 

can be instructed which vocabularies to search for a word, and in which order. 

For information about vocabularies, refer to the ANS or ISO Forth standard or to the Forth Programmer's 

Handbook, which offers discussion of scoping, vocabularies and search orders. 

Here's a list of the Forth words we've covered in this chapter: 

' xxx ( -- addr ) 
Attempts to find the execution token of xxx (the word that follows in the input 

stream) in the dictionary.  

['] 

compile 

time: 

( -- ) 

run time: 

( -- addr ) 

Used only in a colon definition, compiles the execution token of the next word in 

the definition as a literal.  

EXECUTE ( xt -- ) Executes the dictionary entry whose execution token is on the stack. 

EXIT ( -- ) When compiled within a colon definition, terminates execution at that point. 

QUIT ( -- ) Clears all stacks and returns control to the terminal. No message is given. 

HERE ( -- addr ) Returns the next available dictionary location. 

PAD ( -- addr ) 
Returns the beginning address of a scratchpad area used to hold character strings 

for intermediate processing. 

SCR ( -- addr ) User variable. A pointer to the current block number (set by LIST).  

BASE ( -- addr ) User variable. Number conversion base. 

SP@ ( -- addr ) User variable. Return the address of the top of the stack before SP@ is executed.  

http://www.forth.com/forth/forth-books.html
http://www.forth.com/forth/forth-books.html
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TIB ( -- addr ) User variable. Contains the address of the start of the terminal input buffer.  

#TIB ( -- addr ) User variable. Contains the size of the terminal input buffer.  

SP0 ( -- addr ) User variable. Contains the address of the bottom of the parameter stack.  

>IN ( -- addr ) User variable. A pointer to the current position in the input stream.  

BLK ( -- addr ) 
User variable. If non-zero, a pointer to the block being interpreted by LOAD. A 

zero indicates interpretation from the terminal (via the input message buffer).  

 

Review of Terms 

Address interpreter 

The second of Forth's two interpreters, the one which executes the data (list of addresses, list of 

calls, machine code, ...) found in the dictionary entry of a colon definition. The address interpreter 

also handles the nesting of execution levels for words within words. 

Body 

the code and data field of a Forth dictionary entry. 

Cfa 

code field address; the address of a dictionary entry's code pointer field. 

Code pointer field 

the cell in a dictionary entry which somehow points out the xt of the run-time code for this 

particular type of definition. For example, in a dictionary entry compiled by :, the field would 

point out the address interpreter. 

Defining word 

a Forth word which creates a dictionary entry. Examples include :, CONSTANT, VARIABLE, 

etc. 

Head 

the name and link fields of a Forth dictionary entry. 

Input message buffer 

the region of memory within a terminal task that is used to store text as it arrives from the 

terminal. Incoming source text is interpreted here. 

Link field 

the cell in a dictionary entry which contains the address of the previous definition, used in 

searching the dictionary. 

Name field 

the area of a dictionary entry which contains the name of the defined word, along with the number 

of characters in the name. 

Pad 

the region of memory within a terminal task that is used as a scratch area to hold character strings 

for intermediate processing. 

Data field 

the area of a dictionary entry which contains the "contents" of a definition: for a CONSTANT, the 

value of the constant, for a VARIABLE, the value of the variable; for a colon definition, the list of 

xts of words that are to be executed in turn when the definition is executed. 

Run-time code 

a routine, compiled in memory, which specifies what happens when a member of a given class of 

words is executed. The run-time code for a colon definition is the address interpreter; the run-time 

code for a variable pushes the address of the variable's body on the stack. 

System variable 

one of a set of variables provided by Forth, which are referred to system-wide (by any task). 

Contrast with "user variables." 

Task 

in Forth, a partition in memory that contains at minimum a parameter and a return stack and a set 

of user variables. 

User variable 
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one of a set of variables provided by Forth, whose values are unique for each task. Contrast with 

"system variables." 

Vectored execution 

the method of specifying code to be executed by providing not the address of the code itself, but 

the address of a location which contains the xt of the code. This location is often called "the 

vector." As circumstances change within the system, the vector can be reset to point to some other 

piece of code. 

 

Problems — Chapter 9 

1. First review Chap. 2, Prob. 6. Without changing any of those definitions, write a word called 

COUNTS which will allow the judge to optionally enter the number of counts for any crime. For 

instance, the entry  

2. CONVICTED-OF  BOOKMAKING  3 COUNTS TAX-EVASION WILL-SERVE↵ 17 years ok 

will compute the sentence for one count of bookmaking and three counts of tax evasion. [answer] 

3. What's the beginning address of your private dictionary? [answer] 

4. In your system, how far is the pad from the top of your private dictionary? [answer] 

5. Assuming that DATE has been defined by VARIABLE, what is the difference between these two 

phrases:  
6. DATE . 

and  

' DATE . 

7. What is the difference between these two phrases:  
8. BASE . 

and  

' BASE . 

[answer] 

9. In this exercise you will create a "vectored execution array," that is, an array which contains xts of 

Forth words. You will also create an operation word which will execute one word stored in the 

array when the operation word is executed. 

 

Define a one-dimensional array of cells which will return the nth element's address when given a 

subscript n. Define several words which output something at your terminal and take no inputs. 

10. Store the xts of these output words in various elements of the array. Store the address of a do-

nothing word in any remaining elements of the array. Define a word which will take a valid array 

index and execute the word whose address is stored in the referenced element. 

 

For example,  

11. 1 DO-SOMETHING↵ Hello, I speak Forth. ok 

12. 2 DO-SOMETHING↵ 1 2 3 4 5 6 7 8 9 10 ok 

13. 3 DO-SOMETHING↵ 
14. ********** 

http://www.forth.com/starting-forth/sf2/sf2.html
http://www.forth.com/starting-forth/sf9/9-1.forth
http://www.forth.com/starting-forth/sf9/9-2.forth
http://www.forth.com/starting-forth/sf9/9-3.forth
http://www.forth.com/starting-forth/sf9/9-4.forth
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15. ********** 

16. ********** 

17. ********** 

18. ********** ok 

19. 4 DO-SOMETHING↵ ok 

20. 5 DO-SOMETHING↵ ok 

[answer] 

http://www.forth.com/starting-forth/sf9/9-5.forth
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10. I/O and You 

In this chapter, we'll explain how Forth handles I/O of character strings to and from disk and the 

terminal.  

Specifically, we'll discuss disk-access commands, output commands, string-manipulation commands, 

input commands, and number-input conversion. 

 

Output Operators 

The word EMIT takes a single ASCII representation on the stack, using the low-order byte only, and 

prints the character at your terminal. For example, in decimal: 

65 EMIT↵ A ok 

66 EMIT↵ B ok 

The word TYPE prints an entire string of characters at your terminal, given the starting address of the 

string in memory and the count, in this form: 

( addr u -- ) 

We've already seen TYPE in our number-formatting definitions without worrying about the address and 

count, because they are automatically supplied by #>. 

Let's give TYPE an address that we know contains a character string. Remember that the starting address 

of the terminal input buffer is returned by TIB? Suppose we enter the following command: 

TIB #TIB @ TYPE 

This will type 15 characters from the terminal input buffer, which contains the command we just entered: 

TIB #TIB @ TYPE↵ TIB #TIB @ TYPE ok 

Let's digress for a moment to look at the operation of .". At compile time, when the compiler encounters a 

dot-quote, it compiles the ensuing string right into the dictionary, letter-by-letter, up to the delimiting 

double-quote. To keep track of things, it also compiles the count of characters into the dictionary entry. 

Given the definition 

: TEST   ." sample " ; 

and looking at bytes in the dictionary horizontally rather than vertically, here is what the compiler has 

compiled: 

 

If we wanted to, we could type the word "SAMPLE" ourselves (without executing TEST) with the phrase 

' TEST >BODY CELL+ 1+ 7 TYPE 

where 

' TEST >BODY 

gives us the body address of TEST, 
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CELL+ 1+ 

offsets us past the address and the count, to the beginning of the string (the letter "s"), and 

7 TYPE 

types the string "sample." 

That little exercise may not seem too useful. But let's go a step further. 

Remember how we defined LABEL in our egg-sizing application, using nested IF...THEN statements? 

We can rework our definition using TYPE. First let's make all the labels the same length and "string them 

together" within a single definition as a string array. (We can abbreviate the longest label to "XTRA 

LRG" so that we can make each label eight characters long, including trailing spaces.) 

: "LABEL"  ." REJECT  SMALL   MEDIUM  LARGE   XTRA LRGERROR   " ; 

Once we enter 

' "LABEL" >BODY CELL+ 1+ 

to get the address of the start of the string, we can type any particular label by offsetting into the array. 

For example, if we want label 2, we simply add sixteen (2 x 8) to the starting address and type the eight 

characters of the name: 

16 + 8 TYPE 

Now let's redefine LABEL so that it takes a category-number from zero through five and uses it to index 

into the string array, like this: 

: LABEL   8 *  ['] "LABEL" >BODY CELL+ 1+  +  8 TYPE  SPACE ; 

Recall that the word ['] is just like ' except that it may only be used inside a definition to compile the 

address of the next word in the definition (in this case, "LABEL"). Later, when we execute LABEL, 

bracket-tick-bracket followed by to-body will push the body address of "LABEL" onto the stack. The 

number corresponding to CELL+ 1+ is added, then the string offset is added to compute the address of 

the particular label name that we want. 

This kind of string array is sometimes called a "superstring." As a naming convention, the name of the 

superstring usually has quotes around it. Note that this method is in practice never used, as the same result 

can be had with the completely portable ANS Forth word C", as follows: 

: "LABEL"  C" REJECT  SMALL   MEDIUM  LARGE   XTRA LRGERROR   " ; 

: LABEL   8 *  "LABEL" 1+ +  8 TYPE  SPACE ; 

Our new version of LABEL will run a little faster because it does not have to perform a series of 

comparison tests before it hits upon the number that matches the argument. Instead it uses the argument to 

compute the address of the appropriate string to be typed. 

Notice, though, that if the argument to LABEL exceeds the range zero through five, you'll get garbage. If 

LABEL is only going to be used within EGGSIZE in the application, there's no problem. But if an "end 

user," meaning a person, is going to use it, you'd better "clip" the index, like this: 

: LABEL   0 MAX 5 MIN  LABEL ; 

TYPE ( addr u -- ) Transmits u characters, beginning at address, to the current output device. 
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Outputting Strings from Disk 

We mentioned before that the word BLOCK copies a given block into an available buffer and leaves the 

address of the buffer on the stack. Using this address as a starting-point, we can index into one of the 

buffer's 1,024 bytes and type any string we care to. For example, to print line 0 of block 1, we could say 

(assuming you've executed USE blocks.forth) 

CR 1 BLOCK 64 TYPE↵ 
                                                                 ok  

To print line eight, we could add 512 (8 x 64) to the address, like this: 

CR 1 BLOCK  512 + 64 TYPE 

Before we give a more interesting example, it's time to introduce a word that is closely associated with 

TYPE. 

-

TRAILING 

( addr u1 -- 

addr u2 ) 

Eliminates trailing blanks from the string that starts at the address by reducing 

the count from u1 (original byte count) to u2 (shortened byte count).  

   

Handy Hint: 
A Random Number Generator 

This simple random number generator can be useful for games, although for more sophisticated 

applications such as simulations, better versions are available. 

( Random number generation -- High level ) 

VARIABLE rnd   HERE rnd ! 

: RANDOM  rnd @ 31421 *  6927 +  DUP rnd ! ; 

: CHOOSE  ( u1 -- u2 )  RANDOM UM*  NIP ; 

 

( where CHOOSE returns a random integer 

  within the range 0 = or < u2 < u1. ) 

Here's how to use it: 

To choose a random number between zero and ten (but exclusive of ten) simply enter 

10 CHOOSE 

and CHOOSE will leave the random number on the stack. 

-TRAILING can be used immediately before the TYPE command so that trailing blanks will not be 

printed. For instance, inserting it into our first example above would give us 

CR 1  BLOCK 64 

-TRAILING TYPE↵ 
 ok  

The following example uses TYPE  

USE blocks.forth 

: POOF 

  16 CHOOSE 64 * 

  2 BLOCK + 

  CR 64 -TRAILING 

  TYPE ; 

http://www.forth.com/starting-forth/sf3/blocks.forth
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try it: 

POOF↵ 
qualified ok  

POOF↵ 
flexible ok  

POOF↵ 
total ok  

 
Internal String Operators 

The commands for moving character strings or data arrays are very simple. Each requires three 

arguments: a source address, a destination address, and a count. 

CMOVE 

( addr1 

addr2 u -- 

) 

Copies a region of memory u bytes long, byte-by-byte beginning at addr1, to 

memory beginning at addr2. The move begins with the contents of addr1 and 

proceeds toward high memory.  

CMOVE> 

( addr1 

addr2 u -- 

) 

If u is greater than zero, copy u consecutive characters from the data space starting 

at c-addr1 to that starting at c-addr2, proceeding character-by-character from higher 

addresses to lower addresses.  

MOVE 

( addr1 

addr2 u -- 

) 

After this move, the u bytes at addr2 contain exactly what the u bytes at addr1 

contained before the move (no "clobbering" occurs). 

Notice that these commands follow certain conventions we've seen before: 

 When the arguments include a source and a destination, the source precedes the destination. 

 When the arguments include an address and a count (as they do with TYPE), the address precedes 

the count. 

And so with these three words the arguments are 

( source destination count -- ) 

To move the entire contents of a buffer into the PAD, for example, we would write 

210 BLOCK  PAD  1024 CMOVE 

although on cell-address machines the move might be made faster if it were cell-by-cell, like this: 

210 BLOCK  PAD  1024 MOVE 

The word CMOVE> lets you move a string to a region that is higher in memory but that overlaps the 

source region. 
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If you were to use CMOVE, the first letter of the string would get copied to the second byte, but that 

would "clobber" the second letter of the string. The final result would be a string composed of a single 

character. 

Using CMOVE> in this situation keeps the string from clobbering itself during the move. 

You probably notice that CMOVE can be used to fill an array with a certain byte. On older systems the 

word FILL, which we introduced earlier, may have been defined using this trick. On modern Forths it is 

recommended to explicitly use FILL, if fill is what you want to do. For example, to store blanks into 1024 

bytes of the pad, we say 

PAD  1024 CHAR BL FILL 

 

Single-character Input 

The word KEY awaits the entry of a single key from your terminal keyboard and leaves the character's 

ASCII equivalent on the stack in the low-order byte. 

To execute it directly, you must follow it with a return, like this: 

KEY↵ 

 

The cursor will advance a space, but the terminal will not print the "ok"; it is waiting for your input. Press 

the letter "A," for example, and the screen will "echo" the letter "A," followed by the "ok." The ASCII 

value is now on the stack, so enter .: 

KEY A↵ ok  

.↵ 65 ok  
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This saves you from having to look in the table to determine a character's ASCII code. 

You can also include KEY inside a definition. Execution of the definition will stop, when KEY is 

encountered, until an input character is received. For example, the following definition will list a given 

number of blocks in series, starting with the current block, and wait for you to press any key before it lists 

the next one: 

: BLOCKS   ( count -- ) 

        SCR @ + SCR @ DO  I LIST KEY DROP  LOOP ; 

In this case we drop the value left by KEY because we don't care what it is. 

Or we might add a feature that allows us either to leave the loop at any time by pressing return or to 

continue by pressing any other key, such as as space. In this case we will perform a conditional test on the 

value returned by KEY. 

13 CONSTANT #EOL 

: BLOCKS  ( count -- ) 

        SCR @ + 

        SCR @ DO           I LIST 

                           KEY #EOL = ( cr) IF  LEAVE  THEN 

            LOOP ; 

Note that in some Forth systems, the carriage-return key is received as a linefeed (10) or as a null (zero). 

KEY ( -- c ) Returns the ASCII value of the next available character from the current input device. 

   

String Input Commands, from the Bottom up 

There are several words involved with string input. We'll start with the lower-level of these and proceed 

to some higher-level words. Here are the words we will cover in this section: 

ACCEPT 
( c-addr 

u1 -- u2 ) 

Receives u characters (or a carriage return) from the terminal keyboard and stores 

them, starting at the address. The count of received characters is returned. 

WORD 
( c -- addr 

) 

Reads one word from the input stream, using the character (usually blank) as a 

delimiter. moves the string to the address (HERE) with the count in the first byte, 

leaving the address on the stack. 

The word ACCEPT stops execution of the task and waits for input from your keyboard. It expects a given 

number of keystrokes or a carriage return, whichever comes first. The incoming text is stored beginning 

at the address given as an argument, the count of received characters is returned on the stack. 

For example, the phrase 

TIB 80 ACCEPT 

will await up to eighty characters and store them in the Terminal Input Buffer (TIB). (Storing directly in 

the TIB is not standard, but e.g. iForth has no problem with this tradition.) 

This phrase is the one used in the definition of QUIT to get the input for INTERPRET. 

Let's move on to the next higher-level string-input operator. We've just explained that QUIT contains the 

phrase 

... TIB 80 ACCEPT #TIB !  INTERPRET ... 
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but how does the text interpreter scan the terminal input buffer and pick out each individual word there? 

With the phrase 

BL WORD 

WORD scans the input stream looking for the given delimiter, in this case space, and moves the sub-

string into a different buffer of its own, with the count in the first byte of the buffer. Finally, it leaves the 

address of the buffer on the stack, so that INTERPRET (or anyone else) knows where to find it. WORD's 

buffer usually begins at HERE, so the address given is HERE. 

WORD looks for the given delimiter in the terminal input buffer, and moves the sub-string to WORD's 

buffer with the count in the first byte. 

 

When you are executing words directly from a terminal, WORD will scan the input buffer, starting at 

TIB. As it goes along, it advances the input buffer pointer, called >IN, so that each time you execute 

WORD, you scan the next word in the input stream. WORD knows to stop scanning when >IN @ 

becomes larger than #TIB @, the count of received characters. 

>IN is a "relative pointer"; that is, it does not contain the actual address but rather an offset that is to be 

added to the actual address, which is is in this case TIB. For example, after WORD has scanned the string 

"STAR," the value of >IN is five. 

 

WORD ignores initial occurrences of the delimiter (until any other character is encountered). You could 

type 

    STAR 

(that is, STAR preceded by several spaces) and get exactly the same string in WORD's buffer as shown 

above. 

We'll get back to WORD later on in this chapter. For now, though, let's define a word that uses WORD 

and that is more useful for handling string input: 

: TEXT  ( delimiter -- )  PAD 258 BL FILL  WORD COUNT PAD SWAP  MOVE ; 

TEXT, like WORD, takes a delimiter and scans the input stream until it finds the string delimited by it. It 

then moves the string to the pad. What is especially nice about TEXT is that before it moves the string, it 

blanks the pad. This makes it very convenient for use with TYPE. Here's a simple example: 
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CREATE my-name 40 ALLOT 

: I'M   BL TEXT  PAD my-name 40 MOVE ; 

In the first line we define an array called my-name. In the second line we define a word called I'M which 

will allow us to enter 

I'M EDWARD↵ ok  

The definition of I'M breaks down as follows: the phrase 

BL TEXT 

scans the remainder of the input stream looking for a space or the end of the line, whichever comes first. 

(The delimiter that we give to TEXT is actually used by WORD, which is included in the definition of 

TEXT.) TEXT then moves the phrase to a nice clean "pad." 

The phrase 

PAD my-name 40 MOVE 

moves forty bytes from the pad into the array called my-name, where it will safely stay for as long as we 

need it. 

We could now define GREET as follows: 

: GREET   ." Hello, " my-name 40 -TRAILING TYPE  ." , I speak Forth. " ; 

so that by executing GREET, we get 

GREET↵ Hello, EDWARD, I speak Forth.  ok 

Unfortunately, our definition of I'M is looking for a space as its delimiter. This means that a person 

named Mary Kay will not get her full name into my-name. 

To get the complete input stream, we don't want to "see" any delimiter at all, except the end of line. 

Instead of "BL TEXT," we should use the phrase 

1 TEXT 

ASCII 1 is a control character that can't be ever sent from the keyboard and therefore won't ever appear in 

the input buffer. Thus "1 TEXT" is a convention used to read the entire input buffer, up to the carriage 

return. By redefining I'M in this way, Mary Kay can get her name into my-name, space and all. 

By using other delimiters, such as commas, we can "accept" a series of strings and store each of them into 

a different array for different purposes. Consider this example, in which the word VITALS uses commas 

as delimiters to separate three input fields: 

( Form love letter ) 

 

CREATE name 14 ALLOT 

CREATE eyes 12 ALLOT 

CREATE me   14 ALLOT 

 

: VITALS 

        [CHAR] , TEXT  PAD name 14 MOVE 

        [CHAR] , TEXT  PAD eyes 12 MOVE 

               1 TEXT  PAD me   14 MOVE ; 

 

: LETTER  PAGE 
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        ." Dear " name 14 -TRAILING TYPE ." ," 

        CR ." I go to heaven whenever I see your deep " 

                eyes 12 -TRAILING TYPE ."  eyes. Can " 

        CR ." you go to the movies Friday? " 

        CR 30 SPACES ." Love, " 

        CR 30 SPACES me 14 -TRAILING TYPE 

        CR ." P.S. Wear something " eyes 12 -TRAILING TYPE 

           ."  to show off those eyes! " ; 

Which allows you to enter 

VITALS Alice,blue,Fred↵ ok  

then enter 

LETTER 

It works every time. 

So far all of our input has been "Forth style"; that is, numbers precede commands (so that a command 

will find its number on the stack) and strings follow commands (so that a command will find its string in 

the input stream). This style makes use of one of Forth's unique features: it awaits your commands; it 

does not prompt you. 

But if you want to, you may put ACCEPT inside a definition so that it will request input from you under 

control of the definition. For example, we could combine the two words I'M and GREET into a single 

word which "prompts" users to enter their names. For example, 

GREET↵ 
What's your name? 

at which point execution stops so the user can enter a name: 

GREET↵ 

What's your name?Travis Mc Gee↵ 
Hello, Travis Mc Gee, I speak Forth. ok  

We could do this as follows: 

: GREET   CR ." What's your name?" 

       TIB 40 ACCEPT #TIB !  0 >IN ! 

       1 TEXT  CR ." Hello, " 

       PAD 40 -TRAILING TYPE  ." , I speak Forth. " ; 

We've explained all the phrases in the above definition except this one: 

#TIB !  0 >IN ! 

Remember that TEXT, because it uses WORD, always uses >IN as its reference point. But when the user 

enters the word GREET to execute this definition, the string GREET will be stored in the terminal input 

buffer and >IN will be pointing beyond "GREET". ACCEPT does not use >IN as its reference, so it will 

store the user's name beginning at TIB, on top of GREET. If you were to execute TEXT now, it would 

miss the first five letters of the user's name. It's necessary to reset >IN to zero so that TEXT will look 

where ACCEPT has put the name. 
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Number Input Conversion 

When you type a number at your terminal, Forth automatically converts this character string into a binary 

value and pushes it onto the stack. Forth also provides a command which let you convert a character 

string that begins at any memory location into a binary value. 

>NUMBER 

( ud1 c-

addr1 

u1 --  

ud2 c-

addr2 

u2 ) 

ud2 is the unsigned result of converting the characters within the string specified by 

c-addr1 u1 into digits, using the number in BASE, and adding each into ud1 after 

multiplying ud1 by the number in BASE. Conversion continues left-to-right until a 

character that is not convertible, including any "+" or "-", is encountered or the 

string is entirely converted. c-addr2 is the location of the first unconverted character 

or the first character past the end of the string if the string was entirely converted. u2 

is the number of unconverted characters in the string.  

Here's an example that uses >NUMBER: 

: PLUS   0. BL WORD COUNT >NUMBER 2DROP DROP  + ." = " . ; 

PLUS allows us to prove to any skeptic that Forth could use infix notation if it wanted to. We can enter 

2 PLUS 13↵ = 15 ok  

When PLUS is executed, the "2" will be put on the stack in binary form, while the "3" will still be in the 

input stream as a string. The phrase 

0. BL WORD 

reads the string and provides the accumulator for >NUMBER; >NUMBER converts it to binary and puts 

the double-length result plus an unconverted string on the stack. We drop the string and the top half of the 

double-length result. Now + adds the two single-length values and . prints the result. 

Note that you can use >NUMBER to create your own specialized number input conversion routines. 

Since >NUMBER returns the address of the first unconvertible character, you can make decisions based 

on whether the character is a hyphen, dot, or whatever. You can also make decisions based on the location 

of the non-convertible character within the number. For instance, you can write a routine that lets you 

enter a number with a decimal point in it and then scales it accordingly. 

To give a good example of the use of >NUMBER, Figure 10-1 shows a definition of NUMBER. This 

version reads any of the characters 

: , - . / 

as valid punctuation marks which cause the value to be returned on the stack as a double-length integer. If 

none of these characters appear in the string, the value is returned as single-length.  

This definition uses the word WITHIN as we defined it in the problems for Chap. 4. 

Here we use the variable PUNCT to contain a flag that indicates whether punctuation was encountered. 

We suggest that you use an available user variable instead. 

Figure 10-1. A Definition of NUMBER 

VARIABLE punct Creates a flag that will contain true if the number contains valid punctuation. 

: NUMBER ( addr u -- n or d ) 

0 punct ! Initialize flag, no punctuation has occurred. 

OVER C@ Get the first digit. 

http://www.forth.com/starting-forth/sf4/sf4.html
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[CHAR] - =  Is it a minus sign? 

DUP >R Save the flag on the return stack. 

IF 1 /STRING THEN 
If the first character is "-", adds 1 to the address and decrements the character 

count. This effectively skips the "-" character, pointing to the real first digit. 

0. 2SWAP provides the double-length zero as an accumulator. 

BEGIN   

>NUMBER Begins conversion; converts until an invalid digit. 

DUP While there are still characters left, fetch the invalid digit. 

WHILE   

OVER C@ DUP 

[CHAR] : = 
a colon, or 

SWAP [CHAR] , 

[CHAR] / 1+ 

WITHIN OR 

a comma, hyphen, period or slash. 

DUP punct ! Set punct to indicate whether valid punctuation has occurred. 

0= ABORT" ? " Otherwise issue an error message. 

1 /STRING Skip the punctuation character. 

REPEAT Exits here if a blank is detected; otherwise repeats conversion. 

2DROP< Drop the string from the stack. 

R> IF DNEGATE 

THEN 
If the flag on the return stack is true, negates d. 

punct @ 0= IF DROP 

THEN ; 

If there was no punctuation, returns a single-length value by dropping the high-

order cell. 

  

A Closer Look at WORD 

So far we have only talked about using WORD to scan the terminal input buffer (which holds the 

characters that are ACCEPTed from the terminal). But if we recall that the phrase 

BL WORD 

is used by the text interpreter, we realize that WORD actually scans the input stream, which is either the 

terminal input buffer, a string being EVALUATEd, or disk memory being LOADed or INCLUDED. 

To achieve this flexibility, WORD uses other pointers in addition to >IN. The other pointers make sure 

WORD looks in memory (when doing EVALUATE), on disk (when doing LOAD or INCLUDED) or in 

the terminal input buffer. 

A useful word to use in conjunction with WORD is COUNT. Recall that WORD leaves the length of the 

word in the first byte of WORD's buffer and also leaves the address of this byte on the stack. 

 

The word COUNT puts the count on the stack and increments the address, like this: 
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leaving the stack with a string address and a count as appropriate arguments for TYPE, MOVE, etc. 

COUNT is used in the definition of TEXT which we gave a few sections back. 

COUNT 
( addr -- 

addr+1 u ) 

Converts a character string, whose length is contained in its first byte, into the form 

appropriate for TYPE, by leaving the address of the first character and the length on 

the stack. 

We will further illustrate the use of WORD in one of the examples in Chap. 12. 

String Comparisons 

Here is a Forth word that you can use to compare character strings: 

COMPARE 

( c-

addr1 

u1 

 c-addr2 

u2 -- n ) 

Compare the string specified by c-addr1 and u1 to the string specified by c-addr2 

and u2. The strings are compared, beginning at the given addresses, character by 

character up to the length of the shorter string, or until a difference is found. If both 

strings are the same up to the length of the shorter string, then the longer string is 

greater than the shorter string. n is -1 if the string specified by c-addr1 and u1 is less 

than the string specified by c-addr2 and u2. n is zero if the strings are equal. n is 1 if 

the string specified by c-addr1 and u1 is greater than the string specified by c-addr2 

and u2. 

COMPARE can be used to test whether two character strings are equal or whether one is alphabetically 

greater or lesser than the other. 

Here's a list of the Forth words we've covered in this chapter: 

TYPE 
( addr u -- 

) 
Transmits u characters, beginning at address, to the current output device. 

-

TRAILING 

( addr u1 

-- addr u2 

) 

Eliminates trailing blanks from the string that starts at the address by reducing the 

count from u1 (original byte count) to u2 (shortened byte count).  

MOVE 

( addr1 

addr2 u -- 

) 

After this move, the u bytes at addr2 contain exactly what the u bytes at addr1 

contained before the move (no "clobbering" occurs). 

CMOVE 

( addr1 

addr2 u -- 

) 

Copies a region of memory u bytes long, byte-by-byte beginning at addr1, to 

memory beginning at addr2. The move begins with the contents of addr1 and 

proceeds toward high memory.  

KEY ( -- c ) 
Returns the ASCII value of the next available character from the current input 

device. 

ACCEPT 
( c-addr 

u1 -- u2 ) 

Receives u characters (or a carriage return) from the terminal keyboard and stores 

them, starting at the address. The count of received characters is returned. 

WORD 
( c -- addr 

) 

Reads one word from the input stream, using the character (usually blank) as a 

delimiter. Moves the string to the address (HERE) with the count in the first byte, 

leaving the address on the stack. 

>NUMBER 

( ud1 c-

addr1 u1 

-- 

 ud2 c-

addr2 u2 

) 

ud2 is the unsigned result of converting the characters within the string specified 

by c-addr1 u1 into digits, using the number in BASE, and adding each into ud1 

after multiplying ud1 by the number in BASE. Conversion continues left-to-right 

until a character that is not convertible, including any "+" or "-", is encountered or 

the string is entirely converted. c-addr2 is the location of the first unconverted 

character or the first character past the end of the string if the string was entirely 

converted. u2 is the number of unconverted characters in the string.  

COUNT 

( addr -- 

addr+1 u 

) 

Converts a character string, whose length is contained in its first byte, into the 

form appropriate for TYPE, by leaving the address of the first character and the 

length on the stack. 

CMOVE> 
( addr1 

addr2 u -- 

If u is greater than zero, copy u consecutive characters from the data space starting 

at c-addr1 to that starting at c-addr2, proceeding character-by-character from 

http://www.forth.com/starting-forth/sf12/sf12.html
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) higher addresses to lower addresses.  

COMPARE 

( c-addr1 

u1 

 c-addr2 

u2 -- n ) 

Compare the string specified by c-addr1 and u1 to the string specified by c-addr2 

and u2. The strings are compared, beginning at the given addresses, character by 

character up to the length of the shorter string, or until a difference is found. If 

both strings are the same up to the length of the shorter string, then the longer 

string is greater than the shorter string. n is -1 if the string specified by c-addr1 and 

u1 is less than the string specified by c-addr2 and u2. n is zero if the strings are 

equal. n is 1 if the string specified by c-addr1 and u1 is greater than the string 

specified by c-addr2 and u2. 

BLANK 
( addr u -- 

) 
Store ASCII blanks into u bytes of memory, beginning at addr. 

 
Review of Terms 

Relative pointer 

A variable which specifies a location in relation to the beginning of an array or string — not the 

absolute address. 

Superstring 

in Forth, a character array which contains a number of strings. Any one string may be accessed by 

indexing into the array. 

Virtual memory 

the treatment of mass storage (such as the disk) as though it were resident memory; also the 

mechanism of the operating system which makes this treatment possible. 

 

Problems — Chapter 10 

1. Enter some famous quotations into an available block, say 3. Now define a word called CHANGE 

which takes two ASCII values and changes all occurrences within block 3 of the first character 

into the second character. For example,  
2. CHAR A CHAR E CHANGE 

will change all the "A"s into "E"s. [answer] 

3. Define a word called FORTUNE which will print a prediction at your terminal, such as "You will 

receive good news in the mail." The prediction should be chosen at random from a list of sixteen 

or fewer predictions. Each prediction is sixty-four characters, or less, long. [answer] 

4. According to Oriental legend, Buddha endows all persons born in each year with special, helpful 

characteristics represented by one of twelve animals. A different animal reigns over each year, and 

every twelve years the cycle repeats itself. For instance, persons born in 1900 are said to be born 

in the "Year of the Rat." The art of fortune-telling based on these influences of the natal year is 

called "Juneeshee." 

 

Here is the order of the cycle: 
5. Rat Ox Tiger Rabbit Dragon Snake Horse Ram Monkey Cock Dog Boar 

Write a word called .ANIMAL that types the name of the animal corresponding to its position in 

the cycle as listed here; e.g., 

0 .ANIMAL↵ RAT ok  

http://www.forth.com/starting-forth/sf10/10-1.forth
http://www.forth.com/starting-forth/sf10/10-2.forth
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Now write a word called (JUNEESHEE) which takes as an argument a year of birth and prints the 

name of the associated animal. (1900 is the year of the Rat, 1901 is the Ox, etc.) 

Finally, write a word called JUNEESHEE which prompts the user for his/her year of birth and 

prints the name of the person's Juneeshee animal. Define it so that the user won't have to press 

"return" after entering the year. [answer] 

6. Rewrite the definition of LETTER that appears in this chapter so that it uses names and personal 

descriptions that have been edited into a block, rather than entered into character arrays. In this 

way, you can keep a file on many "prospects" and produce a letter for any one person with the 

appropriate descriptions, just by supplying an argument to LETTER, as in 
7. 1 LETTER 

Now define LETTERS so that it prints one letter for each person in your file. 

8. In this exercise you will create and use a virtual array, that is, an array which resides on disk but 

which is referenced like a memory-resident array (with @ and !). 

 

First select an unused block. Put this block number in a variable. Then define an access word 

which accepts a cell subscript from the stack, then computes the block number corresponding to 

this subscript, calls BLOCK and returns the memory address of the subscripted cell. This access 

word should also call UPDATE. 

Test your work so far. 

 

Next use the first cell as a count of how many data items are stored in the array. Define a word 

PUT which will store a value into the next available cell of the array. Define a display routine 

which will print the stored elements in the array. 

 

Now use this virtual array facility to define a word ENTER which will accept pairs of numbers 

and store them in the array. 

 

Finally, define TABLE to print the data entered above, eight members per line. [answer] 

«previous next»  

http://www.forth.com/starting-forth/sf10/10-3.forth
http://www.forth.com/starting-forth/sf10/10-5.forth
http://www.forth.com/starting-forth/sf9/sf9.html
http://www.forth.com/starting-forth/sf9/sf9.html
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11. Extending the Compiler 

In comparison with conventional languages, Forth's compiler is completely backwards. Traditional 

compilers are huge programs designed to translate any foreseeable, legal combination of available 

operators into machine language. In Forth, however, most of the work of compilation is done by a single 

definition, only a few lines long. Special structures like conditionals and loops are not compiled by the 

compiler but by the words being compiled (IF, DO, etc.) 

Lest you scoff at Forth's simple ways, notice that Forth is unique among languages in the ease with which 

you can extend the compiler. Defining new, specialized compilers is as easy as defining any other word, 

as you will soon see. 

When you've got an extensible compiler, you've got a very powerful language! 

Just a question of time 

Before we get fully into this chapter, let's review one particular concept that can be a problem to 

beginning Forth programmers. It's a question of time. 

We have used the term "run time" when referring to things that occur when a word is executed and 

"compile time" when referring to things that happen when a word is compiled. So far so good. But things 

get a little confusing when a single word has both a run-time and a compile-time behavior. 

In general there are two classes of words which behave in both ways. For purposes of this discussion, 

we'll call these two classes "defining words" and "compiling words." 

A defining word is a a word which, when executed, compiles a new definition. A defining word specifies 

the compile-time and run-time behavior of each member of the "family" of words that it defines. Using 

the defining word CONSTANT as an example, when we say 

   80 CONSTANT MARGIN 

we are executing the compile-time behavior of CONSTANT; that is, CONSTANT is compiling a new 

constant-type dictionary entry called MARGIN and storing the value 80 into its parameter field. But when 

we say 

   MARGIN 

we are executing the run-time behavior of CONSTANT; that is, CONSTANT is pushing the value 80 

onto the stack. We'll pursue defining words further in the next few sections. 

The other type of word which possesses dual behavior is the "compiling word." A compiling word is a 

word that we use inside a colon definition and that actually does something during compilation of that 

definition. 

One example is the word .", which at compile time compiles a text string into the dictionary entry with 

the count in front, and at run time types it. Other examples are control-structure words like IF and LOOP, 

which also have compile-time behaviors distinct from their run-time behaviors. We'll explore compiling 

words after we've discussed defining words. 

 

How to Define a Defining Word 

Here are the standard Forth defining words we've covered so far: 

   : 
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   VARIABLE 

   2VARIABLE 

   CONSTANT 

   2CONSTANT 

   CREATE 

What do they all have in common? Each of them is used to define a set of words with similar compile-

time and run-time characteristics. 

And how are all these defining words defined? First we'll answer this question metaphorically. 

Let's say you're in the ceramic salt-shaker business. If you plan to make enough salt shakers, you'll find 

it's easiest to make a mold first. A mold will guarantee that all your shakers will be of the same design, 

while allowing you to make each shaker a different color. In making the mold, you must consider two 

things: 

 How the mold will work. (E.g., how will you get the clay into and out of the mold without 

breaking the mold or letting the seams show?) 

 How the shaker will work. (E.g., how many holes should there be? How much salt should it hold? 

Etc.) 

To bring this analogy back to Forth, the definition of a defining word must specify two things: the 

compile-time behavior and the run-time behavior for that type of word. 

Hold that thought a moment while we look at the most basic of the defining words in the above list: 

CREATE. At compile time, CREATE takes a name from the input stream and creates a dictionary 

heading for it. 

 

At run time, CREATE pushes the body address of EXAMPLE onto the stack. 

What happens if we use CREATE inside a definition? Consider this example, which is the definition for 

VARIABLE: 

   : VARIABLE  CREATE  0 , ; 

When we execute VARIABLE as in 

   VARIABLE ORANGES 
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We are indirectly using CREATE to create a dictionary head with the name ORANGES and an xt that 

points to CREATE's run-time code. Then we are allotting a cell for the variable itself (with "0 ,"). 

Since the run-time behavior of a variable is identical to that of a word defined by CREATE, VARIABLE 

does not need to have run-time code of its own, it can use CREATE's run-time code. 

How do we specify a different run-time behavior in a defining word? By using the word DOES>, as 

shown here: 

   : DEFINING-WORD  CREATE  (compile-time operations) 

                    DOES>   (run-time operations) ; 

To illustrate, the following could be a valid definition for CONSTANT (although in fact CONSTANT is 

usually defined in machine code): 

   : CONSTANT  CREATE  ,  DOES> @ ; 

To see how this definition works, imagine we're using it to define a constant named TROMBONES, like 

this: 

   76 CONSTANT TROMBONES 

 

compile-time portion 

CREATE Create a new dictionary entry (e.g., TROMBONES) 

, 
Compiles the value (e.g., 76) for the constant from the stack into the constant's 

parameter field. 

run-time portion 

DOES> 

Marks the end of the compile-time behavior and the beginning of the run-time 

behavior. At run time, DOES> will leave the body address of the word being 

defined on the stack. 

@ 
Fetches the contents of the constant, using the body address that will be on the stack 

at run time. 

The words that precede DOES> specify what the mold will do; the words that follow DOES> specify 

what the product of the mold will do. 

 

DOES> 
run time: 

( -- addr) 

Used in creating a defining word; marks the end of its compile-time portion and the 

beginning of its run-time portion. The run-time operations are stated in higher-level 

Forth. At run time, the body address of the defined word will be on the stack.  

Defining Words You Can define Yourself 

Here are some examples of defining words that you can create yourself. 

Recall that in our discussion of "String Input Commands" in Chap. 10, we gave an example that 

employed character-string arrays called NAME, EYES, and ME. Every time we used one of these names, 

we followed it with a character count. In the input definition, we wrote 

      ... PAD NAME 14 MOVE 

http://www.forth.com/starting-forth/sf10/sf10.html
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and in the output definition we wrote 

      ... NAME 14 -TRAILING TYPE ... 

and so on. 

Let's eliminate the count by creating a defining word called CHARACTERS, whose product definitions 

will leave the address and count on the stack when executed. 

We'll use it like this: if we say 

   20 CHARACTERS ME 

we will create an array called ME, with twenty characters available for the character string. 

When we execute ME, we'll get the address of the array and the count on the stack. Now we can write 

   PAD ME MOVE 

instead of 

   PAD ME 20 MOVE 

or 

   ME -TRAILING TYPE 

instead of 

   ME 20 -TRAILING TYPE 

Here's how we might define CHARACTERS: 

 : CHARACTERS 

compile-time portion 

CREATE Create a new dictionary entry (e.g., ME) 

DUP , ALLOT 
Compiles the count (e.g., twenty) into the first cell of the array for future reference. 

Then allots an additional twenty bytes beyond the count for the string. 

run-time portion 

DOES> 
Marks the beginning of run-time code, leaving the body address of the product-word 

on the stack at run-time. 

DUP Copies the body address. 

CELL+ Advances the address to point past the count, to the start of the character string. 

SWAP @ 
Swaps the string address with the count address and fetches the count. The stack 

now holds ( addr count -- ). 

;  

We have just extended our compiler! Our new word CHARACTERS is a defining word that creates a 

data structure and procedure that we find useful. CHARACTERS not only simplifies our input and output 

definitions, it also allows us to change the length of any string, should the need arise, in one place only 

(i.e., where we define it). 

Our next example could be useful in an application where a large number of byte (not CHAR!) arrays are 

needed. Let's create a defining word called STRING as follows: 

   : STRING   CREATE ALLOT  DOES> + ;  



160 
 

to be used in the form 

   30 STRING VALVE  

to create an array thirty bytes in length. To access any byte in this array, we merely say: 

   6 VALVE C@  

which would give us the current setting of hydraulic valve 6 at an oil-pumping station. At run time, 

VALVE will add the argument 6 to the body address left by DOES>, producing the correct byte address. 

If our application requires a large number of arrays to be initialized to zero, we might include the 

initialization in an alternate defining word called 0STRING: 

   : ERASED  HERE OVER  ERASE ALLOT ;  

   : 0STRING  CREATE ERASED DOES> + ;  

First we define ERASED to ERASE the given number of bytes, starting at HERE, before ALLOTing the 

given number of bytes. 

Then we simply substitute ERASED for ALLOT in our new version. 

By changing the definition of a defining word, you can change the characteristics of all the member 

words of that family. This ability makes program development much easier. For instance, you can 

incorporate certain kinds of error checking while you are developing the program, then eliminate them 

after you are sure that the program runs correctly. 

Here is a version of STRING which, at run time, guarantees that the index into the array is valid: 

   : STRING  CREATE  DUP , ALLOT 

             DOES>   2DUP @ U< 0= 

                     ABORT" Range error "  + CELL+ ; 

which breaks down as follows: 

DUP , ALLOT Compiles the count and allots the given number of bytes. 

DOES> 2DUP @ 
At run time, given the argument on the stack, produces 

( arg pfa arg count -- ). 

U< 0= 

Tests that the argument is not less than the maximum, i.e., the stored count. Since 

U< is an unsigned compare, negative arguments will appear as very high numbers 

and thus will also fail the test. 

ABORT" Range error " Check if the comparison test fails. 

+ CELL+ 
Otherwise adds the argument to the body address, plus an additional cell to skip 

the count. 

Here's another way that the use of defining words can help during development. Let's say you suddenly 

decide that all of the arrays you've defined with STRING are too large to be kept in computer memory 

and should be kept on disk instead. All you have to do is redefine the run-time portion of STRING. This 

new STRING will compute which record on the disk a given byte would be contained in, read the record 

into a buffer using INCLUDED, and return the address of the desired byte within the buffer. A string 

defined in this way could span many consecutive records (using the same technique as in Prob. 5, Chap. 

10). 

  c0 c1 c2 c3 

r0         

r1         

http://www.forth.com/starting-forth/sf10/sf10.html
http://www.forth.com/starting-forth/sf10/sf10.html
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r2   ?     

r3         

You can use defining words to create all kinds of data structures. Sometimes, for instance, it's useful to 

create multi-dimensional arrays. Here's an example of a defining word which creates two-dimensional 

byte arrays of given size: 

   : ARRAY ( #rows #cols -- ) 

       CREATE DUP , * ALLOT 

       DOES> ( member: row col -- addr ) 

            ROT OVER @ * + +  CELL+ ; 

To create an array four bytes by four bytes, we would say 

   4 4 ARRAY BOARD 

To access, say, the byte in row 2, column 1, we could say 

   2 1 BOARD C@ 

Here's how our ARRAY works in general terms. Since the computer only allows us to have one-

dimensional arrays, we must simulate the second dimension. While our imaginary array looks like this 

  c0 c1 c2 c3 

r0 0 1 2 3 

r1 4 5 6 7 

r2 8 9 10 11 

r3 12 13 14 15 

our real array looks like this 

row# 0 1 2 3 

offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

If you want the address of the byte in row 2, column 1, it can be computed by multiplying your row 

number (2) by the number of columns in each row (4) and then adding your column number (1), which 

indicates that you want the ninth byte in the real array. This calculation is what members of ARRAY 

must do at run time. You'll notice that, to perform this calculation, each member word needs to know how 

many columns are in each row of its particular array. For this reason, ARRAY must store this value into 

the beginning of the array at compile time. 

For the curious, here are the stack effects of the run-time portion of array: 

Operation Contents of stack 

... row col pfa 

ROT col pfa row 

OVER @ col pfa row #cols 

* col pfa row-index 

+ + address 

CELL+ corrected address 

It is necessary to add a cell to the computed address because the first cell of the array contains the number 

of columns. 
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Our final example is the most visually exciting, if not the most useful. 

\ Shapes, using a defining word. 

 

DECIMAL 

 

: star  [CHAR] * EMIT ; 

 

: .row  CR 8 0 DO 

   DUP 128 AND IF  star 

     ELSE  SPACE 

     THEN 

   1 LSHIFT 

     LOOP  DROP ; 

 

: SHAPE CREATE  8 0 DO  C,  LOOP 

  DOES> DUP 7 + DO  I C@ .row  -1 +LOOP  CR ; 

 

  HEX  18 18 3C 5A 99 24 24 24  SHAPE man 

  81 42 24 18 18 24 24 81  SHAPE equis 

  AA AA FE FE 38 38 38 FE  SHAPE castle 

  DECIMAL 

.ROW prints a pattern of stars and spaces that correspond to the 8-bit number on the stack. For instance: 

2 BASE !↵ ok 

00111001 .ROW↵ 
  ***  * ok 

DECIMAL↵ ok 

The defining word SHAPE takes eight arguments from the stack and defines a shape which, when 

executed, prints an 8-by-8 grid that corresponds to the eight arguments. For example: 

MAN 

   ** 

   ** 

  **** 

 * ** * 

*  **  * 

  *  * 

  *  * 

  *  * 

ok 

In summary, defining words can be extremely powerful tools. When you create a new defining word, you 

extend your compiler. Traditional languages like Fortran or BASIC do not provide this flexibility because 

these traditional compilers and interpreters are inflexible packages that say, "Use my instruction set or 

forget it!" 

The real power of defining words is that they can simplify your problem. Using them well, you can 

shorten your programming time, reduce the size of your program, and improve readability. Forth's 

flexibility in this regard is so radical in comparison with traditional languages that many people don't 

even believe it. Well, now you've seen it. 

The next section introduces still another way to extend the ability of Forth's compiler. 

How to Control the Colon Compiler 

Compiling words are words used inside colon definitions to do something at compile time. The most 

obvious examples of compiling words are control-structure words such as IF, THEN, DO, LOOP, etc. 

Because Forth programmers don't often change the way these particular words work, we're not going to 

http://www.forth.com/starting-forth/sf11/shapes.forth
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study them any further. Instead we'll examine the group of words that control the colon compiler and thus 

can be used to create any type of compiling word. 

Recall that the colon compiler ordinarily looks up each word of a source definition and compiles each 

word's address into the dictionary entry — that's all. But the colon compiler does not compile the address 

of a compiling word —it executes it. 

How does the colon compiler know the difference? By checking the definition's "precedence bit." If the 

bit is "off," the address of the word is compiled. If the bit is "on," the word is executed immediately; such 

words are called "immediate" words. 

The word IMMEDIATE makes a word "immediate." It is used in the form: 

   : name definition ; IMMEDIATE 

that is, it is executed right after the compilation of the definition. 

To give an immediate example, let's define 

   : SAY-HELLO  ." Hello" ; IMMEDIATE 

We can execute SAY-HELLO interactively, just as we could if it were not immediate. 

   SAY-HELLO↵ Hello ok 

But if we put SAY-HELLO inside another definition, it will execute at compile time: 

   : GREET SAY-HELLO ." I speak Forth " ;↵ Hello ok 

rather than at execution time: 

   GREET↵ I speak Forth ok 

Before we go on, let's clarify our terminology. Forth folks adhere to a convention regarding the terms 

"run time" and "compile time." In this example, the terms are defined relative to GREET. Thus we would 

say that SAY-HELLO has a "compile-time behavior" but no "run-time behavior." Clearly, SAY-HELLO 

does have a run-time behavior of its own, but relative to GREET it does not. 

To keep our levels straight, let's call GREET in this example the "compilee"; that is, the definition whose 

compilation we're referring to. SAY-HELLO has no run-time behavior in relation to its compilee. 

Here's an example of an immediate word that you're familiar with: the definition of the compiling word 

BEGIN. It's simpler than you might have thought: 

   : BEGIN HERE ; IMMEDIATE 

BEGIN simply saves the address of HERE at compile time on the stack. Why? Because sooner or later an 

UNTIL or REPEAT is going to come along, and either has to know what address in the dictionary to 

return to in the event that it must repeat. This is the address that BEGIN left on the stack. 

BEGIN's compile-time behavior is leaving HERE on the stack. But BEGIN compiles nothing into the 

compilee; there is no run-time behavior for BEGIN. 

Unlike BEGIN, most compiling words do have a run-time behavior. To have a run-time behavior, a word 

has to compile into the compilee the address of the run-time behavior, which must already have been 

defined as a word. 



164 
 

A good example is DO. Like BEGIN, DO must provide, at compile time, a HERE for LOOP or +LOOP 

to return to. But unlike BEGIN, DO also has a run-time behavior: it must push the limit and index onto 

the return stack. 

The run-time behavior of DO is defined by a lower-level word, sometimes called (DO) or 2>R. The 

definition of DO is this: 

   : DO  POSTPONE 2>R  HERE ; IMMEDIATE 

 

The word POSTPONE finds the address of the next word in the definition (in this case 2>R) and compiles 

its address into the compilee definition, so that at run-time 2>R will be executed. 

Another example is the definition of ;. At compile time, semicolon must do the following things: 

1. compile the address of EXIT into the dictionary entry being compiled, 

2. expose the new word to the colon compiler, and 

3. leave compilation mode. 

Here's the definition of semicolon: 

   : ;  POSTPONE EXIT  REVEAL POSTPONE [ ; IMMEDIATE 

The first phrase compiles EXIT, providing the run-time behavior. The second phrase, which is the 

compile-time behavior, first exposes the word being compiled and then gets out of the compiler. 

What is the reason for REVEAL? When words are in the process of being compiled, they are not yet 

findable by the colon compiler. This is done to make it possible to redefine existing words in terms of the 

old definition plus additional code, for example: 

   : CR  CR SPACE ; 

If during the compilation of the new CR its name were findable, the name of the original CR would be 

blocked, and we would have had to do, e.g.: 

   : _cr_  CR ; 

   : CR  _cr_ SPACE ; 

The word POSTPONE can also be used to compile an immediate word as though it were not immediate. 

Given our previous example, in which SAY-HELLO is an immediate definition, we might define 

   : GREET  POSTPONE 

            SAY-HELLO ." I speak Forth " ;↵ ok 

to force SAY-HELLO to be compiled rather than executed at compile time. Thus: 

   GREET↵ Hello I speak Forth ok 

Be sure to note the "intelligence" built into POSTPONE. POSTPONE parses the next word in the input 

stream, decides if it is immediate or not, and proceeds accordingly. If the word was not immediate, 
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POSTPONE compiles the address of the word into a compilee definition; think of it as deferred 

compilation. If the word is immediate, POSTPONE compiles the address of this word into the definition 

currently being defined; this is ordinary compilation, but of an immediate word which otherwise would 

have been executed. 

To review, here are the two words which are useful in creating new compiling words: 

IMMEDIATE 

( 

-- 

) 

Marks the most recently defined word as one which, when encountered during 

compilation, will be executed rather than being compiled. 

POSTPONE xxx 

( 

-- 

) 

• Used in the definition of a compiling word. When the compiling word, in turn, is 

used in a source definition, the execution token of xxx will be compiled into the 

dictionary entry so that when the new definition is executed, xxx will be executed. 

• Used in a colon definition, causes the immediate word xxx to be compiled as though 

it were not immediate; xxx will be executed when the definition is executed. 

More Compiler-controlling Words 

There are two other compiler control words you should know. The words [ and ] can be used inside a 

colon definition to stop compilation and start it again, respectively. Whatever words appear between them 

will be executed "immediately", i.e., at compile time. 

Consider this example: 

   : SAY-HELLO  ." Hello " ; 

   : GREET  [ SAY-HELLO ] ." I speak Forth " ;↵ Hello ok 

   GREET↵ I speak Forth ok 

In this example, SAY-HELLO is not an immediate word, yet when we compile GREET, SAY-HELLO 

executes "immediately." 

For a better example we first need to introduce the word LITERAL. 

As you may recall, a number that appears in a colon definition is called a "literal." An example is the "4" 

in the definition 

   : FOUR-MORE  4 + ; 

 

The use of a literal in a colon definition requires two cells. The first contains the execution token of a 

routine which, when executed, will push the contents of the second cell (the number itself) onto the stack. 

The name of this routine may vary; let's call it the "run-time code for a literal," or simply (LITERAL). 

When the colon compiler encounters a number, it first compiles the run-time code for a literal, then 

compiles the number itself. 
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The word you will use most often to compile a literal is LITERAL (no parentheses). LITERAL compiles 

both the run-time code and the value itself. To illustrate: 

   : FOUR-MORE  [ 4 ] LITERAL + ; 

Here the word LITERAL will compile as a literal the "4" that we put on the stack between the square 

brackets. We get a dictionary entry that is identical to the one shown above. 

For a more useful application of LITERAL, recall that in Chap. 8 we created an array called LIMITS that 

consisted of five cells, each of which contained the temperature limit for a different burner. To simplify 

access to this array, we created a word called LIMIT. The two definitions looked like this: 

   VARIABLE LIMITS 4 CELLS ALLOT 

   : LIMIT ( index -- addr ) CELLS LIMITS + ; 

Now let's assume we will only access the array through the word LIMIT. We can eliminate the head of 

the array (some bytes and one cell) by using this construction instead: 

   HERE  5 CELLS ALLOT  BASE ! 

   : LIMIT ( index -- addr ) CELLS [ BASE @ ] LITERAL + ; 

   DECIMAL 

In the first line we put the address of the beginning of the array (HERE) in the system variable BASE 

(any other scratch variable will work). In the second line, we compile this address as a literal into the 

definition of LIMIT. 

New version Old version 

5 

CELLS 
head for LIMITS 

head for LIMIT 
5 

CELLS 

CELLS head for LIMIT 

(LITERAL) CELLS 

addr LIMITS 

+ + 

EXIT EXIT 

Now we know all there is to know about LITERAL, we can also give a better example of [ and ]. Imagine 

a colon definition in which we need to type the byte from row 2, column 3, of the array BOARD we 

defined in the previous section. To get the address of this byte, we could use the phrase 

   BOARD  2 8 ( #cols) * 3 +  CELL+  + 

but it's time consuming to execute 

   2 8 * 3 + 

every time we use this definition. Alternatively, we could write 

   BOARD  19 CELL+ + 

http://www.forth.com/starting-forth/sf8/sf8.html
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but it's unclear to human readers exactly what 19 means, and it is irritating that, for portability, we still 

have to write CELL+ although 1 CELLS is just a constant. 

The best solution is to write 

   BOARD [ 2 8 ( #cols) * 3 +  CELL+ ] LITERAL + 

Here the arithmetic is performed only once, at compile time, and the result is compiled as a literal. 

Here's a silly example which may give you some ideas for more practical applications. This definition 

let's you peek into the innards of the word itself: 

   : DUMP-THIS  [ HERE ] LITERAL  32 DUMP ." DUMP-THIS" ; 

 

When you execute DUMP-THIS, you will dump the memory into which DUMP-THIS was defined. You 

should see how your Forth compiles the literal value of "here," the literal "32," the execution token of 

DUMP, and then how it inlines the string "DUMP-THIS." (At compile-time, HERE points to the address 

of the next free code byte. LITERAL compiles this number into the definition as a literal, so that it will 

serve as the argument for DUMP at run-time.) 

By the way, here's the definition of LITERAL: 

   : LITERAL  POSTPONE (LITERAL) , ; IMMEDIATE 

First it compiles the address of the run-time code, then it compiles the value itself (using comma). 

To summarize, here are the additional compiler control words we introduced in this section: 

LITERAL 

compile-

time ( -- ) 

run-time ( -- 

n ) 

Used only inside a colon definition. At compile time, compiles a value from the 

stack into the definition as a literal. At run time, the value will be pushed on the 

stack. 

[ ( -- ) Leaves compilation mode.  

] ( -- ) Enters compilation mode.  
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Curtain calls 

This section gives us a chance to say "Goodbye" to the text interpreter and the colon compiler and 

perhaps to see them in a new light. 

Here is a definition of INTERPRET that will work in most Forth systems: 

: INTERPRET ( -- ) 

  BEGIN 

         BL FIND IF  EXECUTE ?STACK ABORT" Stack empty" 

                 ELSE  NUMBER 

                 THEN 

AGAIN ; 

We've covered each of the words contained in this definition; we can describe INTERPRET in English by 

simply "translating" its definition, like this: 

Begin a loop. Within the loop, try to look up the next word from the input stream. If it's not defined, try to 

convert it to a number. If it is defined, execute it, then check to see whether the stack is empty. (If it is, 

exit the loop and print "STACK EMPTY.") Then repeat the infinite loop. 

As you can see, the Forth text interpreter is a simple yet powerful structure. Now let's compare its 

structure with that of the colon compiler: 

: ]  ( -- ) 

  BEGIN 

   BL FIND DUP IF -1 = IF  EXECUTE ?STACK ABORT" Stack empty" 

        ELSE  , 

       THEN 

       ELSE DROP (NUMBER) POSTPONE LITERAL 

       THEN 

  AGAIN ; 

The first thing you probably noticed is that the name of the colon compiler is not :, but ]. The definition of 

: invokes ] after creating the dictionary head and performing a few other odd jobs. 

The next thing you may have noticed is that the compiler is somewhat similar to the interpreter. Let's 

translate the definition into English: 

Begin a loop. Within the loop, try to look up the next word from the input stream. If it's not defined, try to 

convert it to a number and, if it's a number, compile it as a literal. 

If it is defined, FIND has tested the word's precedence bit. If the word is immediate, then execute it and 

check to see whether the stack is empty. If it is not immediate, FIND returned an execution token that can 

be compiled. Then repeat the infinite loop. 

Compare this to INTERPRET and you'll see that ] could be called an interpreter with the ability to decide 

whether to execute or compile any given word. It is the simplicity of this design that let's you add new 

compiling words so easily. 
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In summary, we've shown two ways to extend the Forth compiler: 

1. Add new, specialized compilers, by creating new defining words. 

2. Extend the existing colon compiler by creating new compiling words. 

While traditional compilers try to be universal tools, the Forth compiler is a collection of separate, simple 

tools … with room for more. 

Which approach seems more useful: 

 
Here is a summary of the words we've covered in this chapter: 

DOES> 
run time:  

( -- addr ) 

Used in creating a defining word; marks the end of its compile-time portion 

and the beginning of its run-time portion. The run-time operations are stated 

in higher-level Forth. At run time, the body address of the defined word will 

be on the stack.  

IMMEDIATE ( -- ) 
Marks the most recently defined word as one which, when encountered during 

compilation, will be executed rather than being compiled. 

POSTPONE xxx ( -- ) 

1. Used in the definition of a compiling word. When the compiling word, in 

turn, is used in a source definition, the execution token of xxx will be 

compiled into the dictionary entry so that when the new definition is executed, 

xxx will be executed. 

2. Used in a colon definition, causes the immediate word xxx to be compiled 

as though it were not immediate; xxx will be executed when the definition is 

executed. 

LITERAL 

compile-

time: 

( -- ) 

 

run-time: 

( -- n ) 

Used only inside a colon definition. At compile time, compiles a value from 

the stack into the definition as a literal. At run time, the value will be pushed 

on the stack. 

[ ( -- ) Leaves compilation mode.  

] ( -- ) Enters compilation mode.  

 

Review of Terms 

Compile-time behavior 

1. when referring to defining words: the sequence of instructions which will be carried out when 

the defining word is executed — these instructions perform the compilation of the member words; 

2. when referring to compiling words: the behavior of a compiling word, contained within a colon 

definition, during compilation of the definition. 

Compilee 

a definition being compiled. In relation to a compiling word, the compilee is the definition whose 

compilation the compiling word affects. 
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Compiling word 

a word used inside a colon definition to take some action during the compilation process. 

Defining word 

a word which, when executed, compiles a new dictionary entry. A defining word specifies the 

compile-time and run-time behavior of each member of the "family" of words that it defines. 

Precedence bit 

In Forth dictionary entries, a bit which indicates whether a word should be executed rather than be 

compiled when it is encountered during compilation. 

Run-time behavior 

1. when referring to defining words: the sequence of instructions which will be carried out when 

any member is executed; 

2. when referring to compiling words: a routine which will be executed when the compilee is 

executed. Not all compiling words have run-time behavior. 

 

 
Problems … Chapter 11 

1. Define a defining word named LOADED-BY that will define words which include a file when 

they are executed. Example:  
2. S" mail.forth" LOADED-BY CORRESPONDENCE 

would define the word CORRESPONDENCE. When CORRESPONDENCE is executed, the file 

mail.forth is included (Hint: SLITERAL is NOT useful here). [answer] 

3. Define a defining word BASED. which will create number output words for specific bases. For 

example,  
4. 16 BASED. H. 

would define H. to be a word which prints the top of the stack in hex but does not permanently 

change BASE.  

>DECIMAL 

17 DUP H. .↵ 11 17 ok 

[answer] 

5. Define a defining word called PLURAL which will take the address of a word such as CR or 

STAR and create its plural form, such as CRS or STARS. You'll provide PLURAL with the 

execution token of the singular word by using tick. For instance, the phrase  
6. ' CR PLURAL CRS 

will define CRS in the same way as though you had defined it  

: CRS ( times -- )  0 ?DO  CR  LOOP ; 

[answer] 

7. The French words for DO and LOOP are TOURNE and RETOURNE. Using the words DO and 

LOOP, define TOURNE and RETOURNE as French "aliases." Now test them by writing yourself 

a french loop. [answer] 

http://www.forth.com/starting-forth/sf11/11-1.forth
http://www.forth.com/starting-forth/sf11/11-2.forth
http://www.forth.com/starting-forth/sf11/11-3.forth
http://www.forth.com/starting-forth/sf11/11-4.forth
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8. Write a word called LOOPS which will cause the remainder of the input stream, up to the carriage 

return, to be executed the number of times specified by the value on the stack. For example,  

9. 7 LOOPS CHAR * EMIT SPACE↵ * * * * * * * ok 

[answer] 

 

http://www.forth.com/starting-forth/sf11/11-5.forth
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12. Three Examples 

Programming in Forth is more of an "art" than programming in any other language. Like painters drawing 

brushstrokes, Forth programmers have complete control over where they are going and how they will get 

there. Charles Moore has written, "A good programmer can do a fantastic job with Forth; a bad 

programmer can do a disastrous job." A good Forth programmer must be conscious of "style." 

Forth style is not easily taught; it's a subject that deserves a book of its own. Some elements of good Forth 

style include: 

 simplicity, 

 the use of many short definitions rather than a few longer ones, 

 a correspondence between words and easy-to-understand actions or data structures, 

 well-chosen names, and 

 well laid-out files, clearly commented. 

One good way to learn style, aside from trial and error, is to study existing Forth applications, including 

Forth itself. In this book we've included the definitions of many Forth system words, and we encourage 

you to continue this study on your own. 

This chapter introduces three applications which should serve as examples of good Forth style. 

The first example will show you the typical process of programming in Forth: starting out with a problem 

and working step-by-step towards the solution. 

The second example involves a more complex application already written: you will see the use of well-

factored definitions and the creation of an application-specific "language." 

The third example demonstrates the way to translate a mathematical equation into a Forth definition; you 

will see that working with fixed-point arithmetic does not necessarily mean sacrificing speed and 

compactness. 

 

1. WORD game 

The example in this section is a refinement of the buzzphrase generator we programmed back in Chap. 

10. (You might want to review that version before reading this section.) The previous version did not 

keep track of its own carriage returns, causing us to force CRs into the definition and creating a very 

ragged right margin. The job of deciding how many whole words can fit on a line is a reasonable 

application for a computer and not a trivial one. 

The problem is this: to draft a "brief" which consists of four paragraphs, each paragraph consisting of an 

appropriate introduction and sentence. Each sentence will consist of four randomly-chosen phrases linked 

together by fillers to create grammatically logical sentences and a period at the end. 

The words and phrases have already been edited into the file phrases.forth. Look at this file now, without 

looking at wordgame.forth. (we're pretending we haven't written the application yet). 

File phrases.forth defines the four introductions, compiled into the INTROS string array. The four (or 

more, INTROS is self-organizing) introductions must be used in sequence. The same file phrases.forth 

contains four sets of fillers, in FILLER. The four sets are used in sequence, but any of the three versions 

within a set (organized in columns) is chosen at random. Again, phrases.forth contains the three columns 

of buzzwords from our previous version, with some added words. We've organized the buzz words in 

separate 1ST-ADJECTIVE, 2ND-ADJECTIVE and NOUN string arrays. 

http://www.forth.com/starting-forth/sf10/sf10.html
http://www.forth.com/starting-forth/sf10/sf10.html
http://www.forth.com/starting-forth/sf12/phrases.forth
http://www.forth.com/starting-forth/sf12/wordgame.forth
http://www.forth.com/starting-forth/sf12/phrases.forth
http://www.forth.com/starting-forth/sf12/phrases.forth
http://www.forth.com/starting-forth/sf12/phrases.forth
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You might also look at at the sample output that precedes the end of this section, to get a better idea of the 

desired result. 

"Top-down design" is a widely accepted approach to programming that can help to reduce development 

time. The idea is that you first study your application as a whole, then break the problem into smaller 

processes, then break these processes into still smaller units. Only when you know what all the units 

should do, and how they will connect together, do you begin to write code. 

The Forth language encourages top-down design. But in Forth you can actually begin to write top-level 

definitions immediately. Already we can imagine that the "ultimate word" in our application might be 

called PAPER, and that it will probably be defined something like this: 

: PAPER  4 0 DO  I INTRO  SENTENCE LOOP ; 

where INTRO uses the loop index as its argument to select the appropriate introduction. SENTENCE 

could be defined 

: SENTENCE  4 0 DO  I PHRASE  LOOP  ENDS ; 

where PHRASE uses the loop index as its argument to select the appropriate set, then chooses one of the 

three versions within the set. ENDS takes care of the final '.' and CR at the end of a sentence. 

Using our favorite editor, we can enter these top-level definitions into wordgame.forth. Of course we can't 

INCLUDE this file until we have written our lower-level definitions. 

In complicated applications, Forth programmers often test the logic of their top-level definitions by using 

"stubs" for the lower-level words. A stub is a temporary definition. It might simply print a message to let 

us know its been executed. Or it may do nothing at all, except resolve the reference to its name in the 

high-level definition. 

While the top-down approach helps to organize the programming process, it isn't always feasible to code 

in purely top-down fashion. Usually we have to find out how certain low-level mechanisms will work 

before we can design the higher-level definitions. 

The best compromise is to keep a perspective on the problem as a whole while looking out for low-level 

problems whose solutions may affect the whole application. 

In our example application, we can see that it will no longer be possible to force CRs at predictable 

points. Instead we've got to invent a mechanism whereby the computer will perform carriage returns 

automatically. 

The only way to solve this problem is to count every character that is typed. Before each word is typed, 

the application must decide whether there is room to type it on the current line or do a carriage return 

first. 

So let's define the variable LINECOUNT to keep the count and the constant RMARGIN with the value 

78, to represent the maximum count per line. Each time we type a word we will add its count to 

LINECOUNT. Before typing each word we will execute this phrase: 

( length-of-next-word -- ) LINECOUNT @ +  RMARGIN < 0= IF  CR 

that is, if the length of the next word added to the current length of the line exceeds our right margin, then 

we'll do a carriage return. 

http://www.forth.com/starting-forth/sf12/wordgame.forth
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But we have another problem: how do we isolate words with a known count for each word? For now, let's 

assume we have available a word Split-At-Char. This word breaks strings apart, given a specific 

delimiter. 

Let's write out a "first draft" of this low-level part of our application. It will type a single word, making 

appropriate calculations for carriage return. 

BL Split-At-Char 
Break string in two at first BL. Leaves the count on the stack, 

with the address of the first character underneath. 

DUP 1+ 
Leaves the incremented count and a copy of the original count 

on the stack. 

LINECOUNT @ + 
Compute how long the current line would be if a space plus the 

new word were to be included on it. 

RMARGIN > Decides if it would exceed the margin. 

IF CR 0 LINECOUNT ! If so, resets the carriage and the count. 

ELSE SPACE THEN Otherwise, leaves a space between the words. 

DUP 1+ LINECOUNT +! 
Increases the count by the length of the word to be typed, plus 

one for the space. 

TYPE 
Types the word using the count and the address left by Split-

At-Char. 

Now the problem is getting Split-At-Char to look at the strings in phrases.forth. This is handled by 

INCLUDED, so if we say 

S" phrases.forth" INCLUDED 

then CREATE will make sure all necessary strings are compiled in memory. 

To help CREATE do this, we'll define the word $". As you can see from its definition, $" compiles the 

string (delimited by a second quotation mark) into the dictionary, with the count in the first byte, and 

leaves its address on the stack for }$, }s$ and }r$. To compile the count and string into the dictionary, we 

simply have to execute WORD, since WORD's buffer is HERE. We get the string's address as a fillip, 

since WORD also leaves HERE. 

All that remains is to ALLOT the appropriate number of bytes. This number is obtained by fetching the 

count from the first byte of the string and adding one for the count's byte. 

We have written $" to compile the next string into the dictionary, but also to pile the address of this string 

on the stack, on top of the addresses of other strings that were compiled already just before that. In order 

to let other words know how many string addresses are on the stack, $" also increments the top of stack: 

( 'string1 'string2 ... stringN N  new_string_address -- )  SWAP 1+ ; 

In order to make this work for the first string $" must compile, we have the constant ${ put a 0 on the 

stack. 

We now have ${ and $" compiling our strings for us, but at some point these addresses must be stored in 

the dictionary. There we can choose one of them to print, when INTRO or PHRASE need to do so. 

Because there is clearly work to be done both at compile and run-time, this is an ideal job for a defining 

word. The compile-time work is done in CREATE parts which typically look as follows: 

( u -- ) DUP , ( first compile count ) 0 ?DO , LOOP ( compile u string addresses ) 

while the run-time part is handled in DOES> parts, doing something like 

DOES>   ( ix body -- c-addr u ) SWAP CELLS +  CELL+ @ COUNT ; 
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This DOES> part is actually usable for }$, which has the rather simple job to deliver INTRO's string, 

selected by an index on the stack. Other words that need a string address want more randomness, which is 

easily provided by using CHOOSE (see the listing for }s$ and }r$). 

Now we have a mechanism to present strings to Split-At-Char, the next question is: how do we know 

when we've gotten to the end of such a string? 

Since we are typing word by word what Split-At-Char outputs, we only have to check whether the 

character count of these strings is larger than zero. Once Split-At-Char gets to the end of its input string, it 

starts returning empty strings. 

For example, the phrase 

   S" Hello, I speak Forth" .PHRASE 

should type out the contents of the string, word by word, performing carriage returns where necessary. 

How should we structure our definition of .PHRASE? Let's re-examine what it must do: 

1. Determine whether there is still a word in the string to be typed. 

2. If there is, type the word (with margin checking), then repeat. If there isn't, exit. 

The two part nature of this structure suggests that we need a BEGIN...WHILE...REPEAT loop. Let's 

write our problem this way, if only to understand it better. 

... BEGIN ANOTHER? WHILE .WORD REPEAT ... 

ANOTHER? will do step 1; .WORD will do step 2. 

How should ANOTHER? determine whether there is still a word to be typed from the string? It simply 

tests the top of stack to see if the string count is not yet zero, by using the phrase DUP: 

: ANOTHER? DUP ; ( #chars -- TRUE=string-not-empty ) 

The (not properly formed) flag will serve as the argument for WHILE. 

How do we compute the strings for .PHRASE to work on? This is accomplished by executing one of the 

various children of our compiling word }$, }r$ or }s$. Thus our definition of .PHRASE might be 

: .PHRASE ( c-addr u -- ) BEGIN  ANOTHER?  WHILE  .WORD  REPEAT  2DROP ; 

We need the 2DROP because, when we exit the loop, we will have the final address of Split-At-Char and 

a zero count on the stack, neither of which we need any longer. 

How do we define .WORD? Actually, we've defined it already, a few pages back. However, it pays to 

split .WORD up into a few other useful words, so that it looks like this: 

: -FITS? linecount @ +  RMARGIN > ; 

: SPACE' linecount @ IF  SPACE  1 linecount +!  THEN ; 

: CR'    CR  0 linecount ! ; 

 

: .WORD ( addr1 #chars1 -- addr2 #chars2 ) 

    BL Split-At-Char 

    DUP 1+ ( space!) -FITS? IF  CR'  THEN 

    SPACE' TYPE' ; 

Now we have our word-typing mechanism. But let's see if we're overlooking anything. For example, 

consider that every time we start a new paragraph, we must remember to reset LINECOUNT to zero. 
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Otherwise our .WORD will think that the current line is full when it isn't. We should ask ourselves this 

question: is there ever a case in this application where we would want to perform a CR without resetting 

LINECOUNT? The answer is no, by the very nature of the application. For this reason we defined 

: CR' CR  0 LINECOUNT ! ; 

to create a version of CR that is appropriate for this application. We have used this CR in our definition of 

.WORD. 

We should also consider our handling of spaces between words. By using the phrase 

IF  CR  ELSE  SPACE  THEN 

before typing each word, we guarantee that there will be a space between each pair of words on the same 

line but no space at the beginning of successive lines. And since we are typing a space before each word 

rather than after, we can place a period immediately after a word, as we must at the end of a sentence. 

But there is a problem with this logic: at the beginning of a new paragraph, we will always get one space 

before the first word. Our solution: to redefine SPACE so that it will be sensitive to whether or not we're 

at the beginning of a line, and will not space if we are: 

: SPACE  LINECOUNT @  IF  SPACE  THEN ; 

If LINECOUNT is "0" then we know we are at the beginning of a line, because of the way we have 

redefined CR. 

While we are redefining SPACE, it would be logical to include the phrase 

1 LINECOUNT +! 

in the redefinition. Again our reasoning is that we should never perform a space without incrementing the 

count. 

Let's assume that we have edited our definitions into wordgame.forth. Notice that we had very little 

typing to do, compared with the amount of thinking we've done. Forth source code tends to be concise. 

Now we can define our in-between-level words — words like INTRO and PHRASE that we have already 

used in our highest-level words, but which we didn't define because we didn't have the low-level 

mechanism. 

Let's start with INTRO. The finished definition of INTRO looks like this: 

: INTRO  ( u -- ) CR' intros .PHRASE ; 

Our mechanism has given us a very easy way to select strings. We can test this definition by itself, as 

follows: 

0 INTRO  ( or 1, 2 or 3 INTRO )↵ 
In this paper we will demonstrate that ok 

Notice that we put the argument to INTRO on the stack first. 

The way to get a FILLER phrase is a little more complicated. All of it is handled by the DOES> part of 

}s$. Since we are dealing with sets, not lines, and since the sets all have three strings, we must multiply 

the loop index for filler by 3. To pick one of the 3 versions within the set, we must choose a random 

number under three, add it to the index so far, convert it to cells, then add this result to the beginning of 

the set, taking into account the count of strings in front. We can define 
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... 

DOES> ( ix -- ) DUP @ 1- ROT -  3 *  3 CHOOSE +   CELLS + CELL+ @ COUNT ; 

The DUP @ 1- ROT - is there because we compiled the strings in reverse order of their specification in 

phrases.forth, and therefore need to find the complement of the actual compiled number of strings. 

Again we can test this definition by writing 

3 FILLER↵ 
to function as ok 

The remaining words in the application are similar to their previous counterparts, stated in terms of the 

new mechanism. 

Here is a sample of the output. (We've added REDO as an afterthought so that we'd be able to print the 

same part more than once.) 

In this paper we will demonstrate that by using synchronized third generation capability balanced by 

qualified digital projections it becomes not unfeasible for all but the least stand-alone organizational 

hardware to function as transient undocumented mobility. 

On the one hand, studies have shown that by applying available resources towards synchronized fail-safe 

mobility coordinated with random context sensitive mobility it is possible for even the most responsive 

management mobility to avoid partial unilateral engineering. 

On the other hand, however, practical experience indicates that with structured deployment of stand-alone 

fail-safe concepts coordinated with optimal omnirange time phasing it is possible for even the most 

qualified monitored utilities to avoid optional undocumented utilities. 

In summary, then, we propose that by using total incremental programming coordinated with 

representative policy engineering it is possible for even the most responsive transitional engineering to 

generate a high level of compatible incremental engineering. 

 

2. File Away! 

Our second example consists of a simple filing system. It is a moderately useful application, and a good 

one to learn Forth from. We have divided this section into four parts: 

1. A "How To" for the end user. This will give you an idea of what the application can do. 

2. Notes on the way the application is structured and the way certain definitions work. 

3. A glossary of all the definitions in the application. 

4. A listing of the application, including the data files themselves. 

 

How to Use the Simple File System 

This computer filing system lets you store and retrieve information quickly and easily. At the moment, it 

is set up to handle people's names, occupations, and phone numbers. Not only does it allow you to enter, 

change, and remove records, it also allows you to search the file for any piece of information. For 

example, if your have a phone number, you can find the person's name; or, given a name, you can find the 

person's job, etc. 

For each person there is a "record" which contains four "fields." The names which specify each of these 

four fields are 
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SURNAME    GIVEN    JOB    PHONE 

("Given," of course, refers to a person's given name, or first name.) 

 

File Retrieval 

You can search the file for the contents of any field by using the word FIND, followed by the field-name 

and the contents, as in 

FIND JOB newscaster↵Dan Rather ok 

If any "job" field contains the string "newscaster," then the system prints the person's full name. If no 

such field exists, it prints "NOT IN FILE." 

Once you have found a field, the record in which it was found becomes "current." You can get the 

contents of any field in the current record using the word GET. For instance, having entered the line 

above, you can now enter 

GET phone↵555-9876 ok 

The FIND command will only find the first instance of the field that you are looking for. To find out if 

there is another instance of the field that you last found, use the command ANOTHER. For example, to 

find another person whose "job" is "newscaster," enter 

ANOTHER↵Jessica Savitch ok 

and 

ANOTHER↵Frank Reynolds ok 

When there are no more people whose job is "newscaster" in the file, the ANOTHER command will print 

"NO OTHER." 

To list all the names whose field contains the string that was last found, use the command ALL: 

ALL↵ 
Dan Rather 

Jessica Savitch 

Frank Reynolds 

ok 

Since the surname and given name are stored separately, you can use FIND to search the file on the basis 

of either one. But if you know the person's full name, you can often save time by locating both fields at 

once, by using the word FULLNAME. FULLNAME expects the full name to be entered with the last 

name first and the two names separated by a comma, as in 

FULLNAME Wonder,Stevie↵Stevie Wonder ok 

(There must not be a space after the comma, because the comma marks the end of the first field and the 

beginning of the second field.) Like FIND and ANOTHER, FULLNAME repeats the name to indicate 

that it has been found. 

You can actually find any pair of fields by using the word PAIR. You must specify both the field names 

and their contents, separated by a comma. For example, to find a newscaster whose given name is Dan, 

enter 
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PAIR JOB newscaster,GIVEN Dan↵Dan Rather ok 

 

File Maintenance 

To enter a new record, use the command ENTER, followed by the surname, given name, job, and phone, 

each separated by a comma only. For example, 

ENTER Nureyev,Rudolf,Ballet dancer,555-1234↵ ok 

To change the contents of a single field within the current record, use the command CHANGE followed 

by the name of the field, then the new string. For example, 

CHANGE JOB choreographer↵ ok 

To completely remove the current record, use the command REMOVE: 

REMOVE↵ ok 

 

Comments 

This section is meant as a guide, for the novice Forth programmer, to the glossary and listing which 

follow. We'll describe the structure of this application and cover some of the more complicated 

definitions. As you read this section, study the glossary and listing on your own, and try to understand as 

much as you can. 

Turn to the listing now. Near the end, this file contains the definitions for all nine end-user commands 

we've just discussed. Notice how simple these definitions are, compared to their power! 

This is a characteristic of a well-designed Forth application. Notice that the word -FIND, the elemental 

file-search word, is factored in such a way that it can be used in the definitions of FIND, ANOTHER, and 

ALL, as well as in the internal word, (PAIR), which is used by PAIR and by FULLNAME. 

We'll examine these definitions shortly, but first let's look at the overall structure of this application. 

One of the basic characteristics of this application is that each of the four fields has a name which we can 

enter in order to specify the particular field. For example, the phrase 

SURNAME PUT 

will put the character string that follows in the input stream into the "surname" field of the current record. 

The phrase 

SURNAME .FIELD 

will print the contents of the "surname" field of the current record, etc. 

There are two pieces of information that are needed to identify each field: the field's starting address 

relative to the beginning of a record and the length of the field. 

In this application, a record is laid out like this: 

http://www.forth.com/starting-forth/sf12/filer.forth
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For instance, the "job" field starts thirty-two bytes in from the beginning of every record and continues 

for twenty-four bytes. 

We chose to make a record exactly sixty-four bytes long, but this system can be modified to hold records 

of any length and any number of fields. 

To add more fields, just add lines with the length of the new field, followed by RECORD new-field-

name. For example, to add a field FOO which is thirty bytes long, do 

30 RECORD foo 

etc. The system automatically computes the values of R-LENGTH and #MAXRECS. 

We've taken the two pieces of information for each field and put them into a double-length table 

associated with each field name. This task is performed by the defining word RECORD, at compile-time. 

Our definition of JOB, therefore eventually executes CREATE, as in 

 
CREATE JOB  32 , 24 , 

The literal 32 is computed by the system, which keeps track of the actual offset into a record through 

updating R-LENGTH. 

Thus when we enter the name of a field, we are putting on the stack the address of the table that describes 

the "job" field. We can fetch either or both pieces of information relative to this address. 

Let's call each of these entries a "field specifying table," or a "spec table" for short. 

Part of the design for this application is derived from the requirements of FIND, ANOTHER, and ALL; 

that is, FIND not only has to find a given string within a given type of field, but also needs to "remember" 

the string and the type of field so that ANOTHER and ALL can search for the same thing. 

We can specify the kind of field with just one value, the address of the spec table for that type of field. 

This means that we can "remember" the type of field by storing this address into KEEP. 

KIND was created for this purpose, to indicate the "kind" of field. 

To remember the string, we have defined a buffer called WHAT to which the string can be moved. 

The word KEEP serves the dual purpose of storing the given field type into KIND and the given character 

string into WHAT. If you look at the definition of the end-user word FIND, you will see that the first 

thing it does is KEEP the information on what is being searched for. Then FIND executes the internal 

word -FIND, which uses the information in KIND and WHAT to find a matching string. 
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ANOTHER and ALL also use -FIND, but they don't use KEEP. Instead they look for fields that match the 

one most recently "kept" by FIND. 

So that we can GET any piece of information from the record we have just "found," we need a pointer to 

the "current" record. This need is met by the value #RECORD. The operations of the words SET, TOP 

and DOWN should be fairly obvious to you. 

The word RECORD@ uses its stack parameter to compute the absolute address (the computer-memory 

address, somewhere in the disk buffer) of the beginning of the current record. RECORD@ also makes 

sure that the record really is in the disk buffer. 

While a spec table contains the relative address of the field and its length, we usually need to know the 

field's absolute address and length for words such as TYPE, MOVE, and PARSE. Look at the definition 

of the word FIELD to see how it converts the address of a spec table into an absolute address and length. 

Then examine how FIELD is applied in the definition of .FIELD. 

The word PUT also employs FIELD. Its phrase 

>R KBD, R> >FLD_ 

leaves on the stack the arguments 

addr-of-string count-of-string  absolute-addr-of-field size-of-field 

for MOVE to move the string into the appropriate field of the current record. Before we move the string, 

we fill the field with spaces, to blank possible old contents. Also, we make sure the length of the moved 

string is not larger than the size of the field. 

There are two things worth noting about the definition of FREE. The first is the method used to determine 

whether the record is empty. We've made the assumption that if the first byte of a record is empty, then 

the whole record is empty, because of the way ENTER works. If the first byte contains a character whose 

ASCII value is less than or equal to BL, then it is not a printing character and the line is empty. As soon 

as an empty record is found, LEAVE ends the loop. #RECORD will contain the number of the free 

record. 

Another thing worth noting about FREE is that it aborts if the file is full, that is, if it runs through all the 

records without finding one empty. We can use a DO loop to run through all the records, but how can we 

tell that the loop has run out before it has found an empty record? 

The best way is to leave a TRUE on the stack, to serve as a flag, before beginning the loop. If an empty 

record is found, we can change the flag to FALSE (with the word INVERT) before we leave the loop. 

When we come out of the loop, we'll have a TRUE if we never found an empty record, a FALSE if we 

did. This flag will be the argument for ABORT". 

We use a similar technique in the definition of -FIND. -FIND must return a flag to the word that executed 

it: FIND, ANOTHER, ALL or (PAIR). The flag indicates whether a match was found before the end of 

the file was reached. Each of these outer words needs to make a different decision based on the state of 

this flag. This flag is TRUE if a match is not found (hence the name -FIND). The decision to use negative 

logic was based on the way -FIND is used. 

Because the flag needs to be TRUE if a match is not found, the easiest way to design this word is to start 

with a TRUE on the stack and change it to a FALSE only if a match is found. 

Now that you understand the basic design of this application, you should have no trouble understanding 

the rest of the listing, using the glossary as a guide. 
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Filer Glossary 

/CR A constant that defines the length in bytes of a newline sequence. 

#MAXRECS 
A constant that defines the maximum number of records in the data file. To increase this 

number, add lines containing R-LENGTH spaces, followed by a newline, to the data file. 

FILE A value that holds the handle of the file containing the data. 

KIND 
A value that contains the address of the field-specifying table for the type of field that was 

last searched for by FIND. 

R-LENGTH A value that contains the length in bytes of a single record. 

#RECORD A value that points to the current record. 

RECORD 

A defining word to create field-specifying tables. Takes the field width in bytes as a 

parameter and updates R-LENGTH. All uses of RECORD should happen before 

#MAXRECS is defined. 

Usage: 10 RECORD foo 

SURNAME Returns the address of the field-specifying table for the "surname" (last name) field. 

GIVEN Returns the address of the field-specifying table for the "given" (first name) field. 

JOB Returns the address of the field-specifying table for the "job" field. 

PHONE Returns the address of the field-specifying table for the "phone" field. 

WHAT 
Returns the address of a buffer that contains the string that is being searched for, or was last 

searched for, by FIND. 

RBUF Returns the address of a buffer that contains the current record data. 

FLUSH Makes sure all changed data is committed to disk, but does not close the file. 

UPDATE Writes the data for the current record to disk. 

RECORD@ Ensures that the specified record is in RBUF. 

>FLD_ 
Given the address of a field-specifying table, returns the address of the associated field in 

RBUF, along with its assigned length. 

>FLD 
Given the address of a field-specifying table, returns the address of the associated field in 

RBUF, along with its actual length. 

FIELD 
Ensures that the associated field in the current record is in a disk buffer and returns the 

address of the field in the buffer along with its actual length. 

.FIELD 
From the current record, types the contents of the field that is associated with the field-

specifying table at addr. 

SET Sets the record pointer to the specified record. 

TOP Resets the record pointer to the top of the file. 

DOWN Moves the record pointer down one record. 

.NAME Prints the full name found in the current record. 

READ 
Moves a character string, delimited by a comma or by a carriage return, from the input 

stream to a temporary buffer, then returns its address and count. 

PUT 
Moves a character string, delimited by a comma or by a carriage return, from the input 

stream into the field whose field-specifying table address is given on the stack. 

KEEP 

Moves a character string, delimited by a comma or by a carriage return, from the input 

stream into WHAT, and saves the address of the given field in KIND, for future use by -

FIND. 

FREE 
Starting at the top of the file, finds the first record that is free, that is, whose count is zero. 

Aborts if the file is full. 

-FIND 
Beginning at #record and proceeding down, compares the contents of the field indicated by 

KIND against the contents of WHAT. 

(PAIR) 

Starting from the top, attempts to find a match on the contents of WHAT, using KIND to 

indicate the type of field. If a match is made, then attempts to match a second field, whose 

type is indicated by "field", with the contents {c-addr u}. If both match, prints the name; 

otherwise repeats until a match is made or until the end of the file is reached, in which case 

prints an error message. 
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ENTER 

Finds the first free record, then moves four strings delimited by commas into the surname, 

given, job and phone fields of that record. 

Usage: ENTER lastname,firstname,job,phone 

REMOVE Erases the current record. 

CHANGE 
Changes the contents of the given field in the current record. 

Usage: CHANGE field-name new-contents 

GET 
Prints the contents of the given type of field from the current record. 

Usage: GET field-name 

FIND 

Finds the record in which there is a match between the contents of the given field and the 

given string. 

Usage: FIND field-name string 

ANOTHER 

Beginning with the next record after the current one, and using KIND to determine type of 

field, attempts to find a match on WHAT. If successful, types the name; otherwise an error 

message. 

ALL 
Beginning at the top of the file, uses KIND to determine type of field and finds all matches 

on WHAT. Types the full name(s). 

PAIR 

Finds the record in which there is a match between both the contents of the first given field 

and the first given string, and also the contents of the second given field and the second 

given string. Comma is delimiter. 

Usage: PAIR field1 string1,field2 string2 

FULLNAME 
Finds the record in which there is a match on both the first and last names given. 

Usage: FULLNAME lastname,firstname 

 

Filer Listing 

The listing is here. 

 

3. No Weighting 

Our final example is a math problem which many people would assume could only be solved by using 

floating point. It will illustrate how to handle a fairly complicated equation with fixed-point arithmetic 

and demonstrate that for all the advantages of using fixed-point, range and precision need not suffer. Of 

course, when the hardware does have floating point one should preferably use that instead, and we show 

how to do that, too. Using fixed-point has the slight disadvantage that, in order to correctly compute scale 

factors, we have to know our Forth's number of bits per cell. For modern Forths the number of bits per 

cell can be 16, 32, 64, or even higher. In order not to complicate the following description too much, we 

will assume 16-bit hardware. That is probably the only environment this example will be useful for, 

anyway. Also, we'll assume 1 CHARS is equivalent to one byte. 

In this example we will compute the weight of a cone-shaped pile of material, knowing the height of the 

pile, the angle of the slope of the pile, and the density of the material. 

To make the example more "concrete," let's weigh several huge piles of sand, gravel, and cement. The 

slope of each pile, called the "angle of repose," depends on the type of material. For example, sand piles 

itself more steeply than gravel. 

 

(In reality these values vary widely, depending on many factors; we have chosen approximate angles and 

densities for purposes of illustration.) 

http://www.forth.com/starting-forth/sf12/filer.forth
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Here is the formula for computing the weight of a conical pile h feet tall with an angle of repose of theta 

degrees, where D is the density of the material in pounds per cubic foot: 

 

This will be the formula which we must express in Forth. 

 
For Skeptics 

The volume of a cone, V, is given by 

 

where b is the radius of the base and h is the height. We can compute the base by knowing the angle or, 

more specifically, the tangent of the angle. The tangent of an angle is simply the ratio of the segment 

marked h to the segment marked b in this drawing: 

 

If we call this angle "theta", then 

 

Thus we can compute the radius of the base with 

 

When we substitute this into the expression for V, and then multiply the result by the density D in pounds 

per cubic foot, we get the formula shown in the text. 

Let's design our application so that we can enter the name of a material first, such as 

DRY-SAND 

then enter the height of a pile and get the result for dry sand. 
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Let's assume that for any one type of material the density and angle of repose never vary. We can store 

both of these values for each type of material into a table. Since we ultimately need each angle's tangent, 

rather than the number of degrees, we will store the tangent. For instance, the angle of repose for a pile of 

cement is 35
o
, for which the tangent is .700. We will store this as the integer 700. 

Bear in mind that our goal is not just to get an answer; we are programming a computer or device to get 

the answer for us in the fastest, most efficient, and most accurate way possible. As we indicated in Chap. 

5, to write equations using fixed-point arithmetic requires an extra amount of thought. But on hardware 

that would have to emulate floating point, the effort pays off in two ways: 

 

1. vastly improved run-time speed, which can be very important when there are millions of steps 

involved in a single calculation, or when we must perform thousands of calculations every minute. 

Also, 

2. program size, which would be critical if, for instance, we wanted to put this application in a hand-

held device specifically designed as a pile-measuring calculator. Forth is often used in this type of 

instrument. 

Let's approach our problem by first considering scale. The height of our piles ranges from 5 to 50 feet. By 

working out our equation for a pile of cement 50 feet high, we find that the weight will be nearly 

3,500,000 pounds. 

But because our piles will not be shaped as perfect cones and because our values are averages, we cannot 

expect better than four or five decimal places of accuracy. If we scale our result to tons, we get about 

17,500. This value will comfortably fit within the range of a single-length number, even on 16-bit 

hardware. For this reason, let's write this application entirely with single-length arithmetic operators. 

(Although we will assume 16-bit hardware in the following, the code as shown will run unmodified on 

any ANS Forth.) 

Applications which require greater accuracy can be written using double-length arithmetic; to illustrate 

we've even written a second version of this application using double-length math, as you'll see later on. 

But we intend to show the accuracy that Forth can achieve even with 16-bit math. 

By running another test with a pile 40 feet high, we find that a difference of one-tenth of a foot in height 

can make a difference of 25 tons in weight. So we decide to scale our input to feet and inches rather than 

merely to whole feet. 

We'd like the user to be able to enter 

15 FOOT  2 INCH  PILE 

http://www.forth.com/starting-forth/sf5/sf5.html
http://www.forth.com/starting-forth/sf5/sf5.html
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where the words FOOT and INCH will convert the feet and inches into tenths of an inch, and PILE will 

do the calculation. Here's how we might define FOOT and INCH: 

: FOOT  10 * ; 

: INCH  100 12 */ 5 +  10 / + ; 

The use of INCH is optional. 

(By the way, we could as easily have designed input to be in tenths of an inch with a decimal point, like 

this: 

15.2 

In this case, NUMBER would convert the input as a double-length value. Since we are only doing single-

length arithmetic, PILE could simply begin with DROP, to eliminate the high-order cell.) 

In writing the definition of PILE, we must try to maintain the maximum number of places of precision 

without overflowing 15 bits. According to the formula, the first thing we must do is cube the argument. 

But let's remember that we will have an argument which may be as high as 50 feet, which will be 500 as a 

scaled integer. Even to square 500 produces 250,000, which exceeds the capacity of single-length 

arithmetic using 16-bit cells. 

We might reason that, sooner or later in this calculation, we're going to have to divide by 2000 to yield an 

answer in tons. Thus the phrase 

DUP DUP 2000 */ 

will square the argument and convert it to tons at the same time, taking advantage of */'s double-length 

intermediate result. Using 500 as our test argument, the above phrase will yield 125. 

But our pile may be as small as 5 feet, which when squared is only 25. To divide by 2000 would produce 

a zero in integer arithmetic, which suggests that we are scaling down too much. 

To retain the maximum accuracy, we should scale down no more than necessary. 250,000 can be safely 

accommodated by dividing by 10. Thus we will begin our definition of PILE with the phrase 

DUP DUP 10 */ 

The integer result at this stage will be scaled to one place to the right of the decimal point (25000 for 

2500.0). 

Now we must cube the argument. Once again, straight multiplication will produce a double-length 32-bits 

result, so we must use */ to scale down. We find that by using 1000 as our divisor, we can stay just within 

single-length range. Our result at this stage will be scaled to one place to the left of the decimal point 

(12500 for 125000.) and still be accurate to 5 digits. 

According to our formula, we must multiply our argument by pi. We know that we can do this in Forth 

with the phrase 

355 113 */ 

which causes no problems with scaling. 

Next we must divide our argument by the tangent squared, which we can do by dividing the argument by 

the tangent twice. Because our tangent is scaled to three decimal places, to divide by the tangent we 

multiply by 1000 and divide by the table value. Thus we will use the phrase 
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1000 TAN(THETA) */ 

Since we must perform this twice, let's make it a definition, called /TAN (for divide-by-the-tangent) and 

use the word /TAN twice in our definition of PILE. Our result at this point will be scaled to one place to 

the left of the decimal (26711 for 267110, using our maximum test values). 

All that remains is to multiply by the density of the material, of which the highest is 131 pounds per cubic 

foot. To avoid overflowing, let's try scaling down by two decimal places with the phrase 

DENSITY 100 */ 

But by testing, we find that the result at this point for a 50-foot pile of cement will be 34,991, which just 

exceeds the 15-bit limit. Now is a good time to take the 2000 into account. Instead of 

DENSITY 100 */ 

we can say 

DENSITY 200 */ 

and our answer will now be scaled to whole tons. 

You will find this version in the listing. As we mentioned, we have also written this application using 

double-length arithmetic. In this version you enter the height as a double-length number scaled to tenths 

of a foot, followed by the word FEET, as in 50.0 feet. 

By using double-length integer arithmetic, we are able to compute the weight of the pile to the nearest 

whole pound. The range of double-length 32-bit integer arithmetic compares with that of single-precision 

floating-point arithmetic. Below is a comparison of the results obtained using a 10-decimal-digit pocket 

calculator, single-length Forth, double-length (32-bit) Forth, and floating-point Forth. The test assumes a 

50-foot pile of cement, using the table values. 

  in pounds in tons 

calculator 34,995,633     17,497.816 

Forth 16-bit single-length ---     17,495 

Forth 16-bit double-length 34,995,634     17,497.817 

Forth 32-bit single-length ---     17,495 

Forth 32-bit double-length 34,995,634     17,497.817 

Forth floating-point 34,995,633     17,497.816 

Here's an example of our application's output: 

S" spiles.forth" INCLUDED↵ ok  

cement↵ ok  

10 foot pile↵ = 138 tons of cement ok  

10 foot 3 inch pile↵ = 151 tons of cement ok  

dry-sand↵ ok  

10 foot pile↵ = 81 tons of dry sand ok  

S" dpiles.forth" INCLUDED cement↵ ok  

10.0 feet↵ = 279939 pounds of cement or 139.969 tons ok  

S" fpiles.forth" INCLUDED cement↵ ok  

10e feet↵ = 279965.06373598 pounds, or 139.98253187 tons of cement ok  

http://www.forth.com/starting-forth/sf12/spiles.forth
http://www.forth.com/starting-forth/sf12/dpiles.forth
http://www.forth.com/starting-forth/sf12/fpiles.forth
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A note on " 

The defining word MATERIAL takes three arguments for each material, one of which is the address of a 

string. .SUBSTANCE uses this address to type the name of the material. 

To put the string in the dictionary and to give an address to MATERIAL, we have defined a word called 

". As you can see from its definition, " compiles the string (delimited by a second quotation mark) into the 

dictionary, with the count in the first byte, and leaves its address on the stack for MATERIAL. To 

compile the count and string into the dictionary, we simply have to execute WORD, since WORD's buffer 

is HERE. We get the string's address as a fillip, since WORD also leaves HERE. 

All that remains is to ALLOT the appropriate number of bytes. This number is obtained by fetching the 

count from the first byte of the string and adding one for the count's byte. 

 
A Browser Interface for FPILES 

This interface is Forth system dependent. It will work for iForth 2.0, after some preparations: 

 Run iForth on the file fsserver.frt 

 Execute the word PILE-SERVER. 

 Manipulate the below form and press SEND. A new browser window opens with the calculation 

result. 

Height in feet:  

cement 

wet sand 

dry sand 

clay 

loose gravel 

packed gravel 

 

Review of Terms 

Stub 

in Forth, a temporary definition created solely to allow testing of a higher-level definition. 

Top-down Programming 

a programming methodology by which a large application is divided into smaller units, which 

may be further subdivided as necessary. The design process starts with the overview, or "top," and 

proceeds down to the lowest level of detail. Coding of the low-level units begins only after the 

entire structure of the application has been designed. 

«previous next»  

 

 

 

 

http://www.forth.com/starting-forth/sf12/fsserver.frt
http://www.forth.com/starting-forth/sf11/sf11.html
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Notes 


